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Numerous languages characterize ‘social pain’, the feel-

ings resulting from social estrangement, with words

typically reserved for describing physical pain (‘broken

heart’, ‘broken bones’) and perhaps for good reason. It

has been suggested that, in mammalian species, the

social-attachment system borrowed the computations

of the pain system to prevent the potentially harmful

consequences of social separation. Mounting evidence

from the animal lesion and human neuroimaging litera-

tures suggests that physical and social pain overlap

in their underlying neural circuitry and computational

processes. We review evidence suggesting that the

anterior cingulate cortex plays a key role in the physical–

social pain overlap. We also suggest that the physical–

social pain circuitry might share components of a broader

neural alarm system.

When people speak of ‘hurt feelings’ or ‘broken hearts’, it
is clear that these descriptions are meant to reflect painful
experiences. Writers have long noted that some of the most
painful experiences known to humankind are those that
involve the loss of important social bonds. Indeed, the
use of physical pain words to describe episodes of social
estrangement is common across many different languages
[1]. However, is feeling socially estranged truly compar-
able to feeling physical pain or is this merely poetic
license? This review presents evidence suggesting that
the similarity between physical and social pain does not
end with this linguistic overlap but extends into how the
human brain processes both kinds of pain. We propose
that, based on similarities in purpose, process, and func-
tion, physical and social pain share parts of the same
underlying system for their operation.

An overlap between physical and social pain

We have recently proposed that physical pain – the pain
experienced upon bodily injury – and social pain – the
pain experienced upon social injury when social relation-
ships are threatened, damaged or lost – share neural and
computational mechanisms [1]. This shared system is
responsible for detecting cues that might be harmful to
survival, such as physical danger or social separation, and
then for recruiting attention and coping resources to
minimize threat.

Such an overlap would be evolutionarily adaptive.
Because of the prolonged period of immaturity and the
critical need for maternal care in mammalian infants, it
has been suggested that the pain mechanisms involved in
detecting and preventing physical danger were co-opted by
the more recently evolved social attachment system to
detect and prevent social separation [2]. This hypothesis
was first proposed to explain why opioids are effective in
alleviating both physical pain and separation distress in
several different animal species [2]. Because of its aver-
siveness, pain captures attention, disrupts ongoing behav-
ior, and motivates action aimed at regaining safety and
mitigating painful experience [3]. If the need to maintain
close contact with the mother for nurturance and protec-
tion is crucial to mammalian survival, experiencing pain
upon social separation would be an adaptive way to
prevent the harmful consequences of maternal separation.

Before continuing, we briefly define physical and social
pain. Physical pain is defined as the ‘unpleasant sensory
and emotional experience associated with actual or poten-
tial tissue damage’ [4]. Social pain is defined as the
distressing experience arising from the perception of
actual or potential psychological distance from close others
or a social group (see Box 1). This parallels Bowlby’s
conception of the infant attachment system that monitors
for physical distance from the caregiver and elicits distress
once a certain distance has been exceeded [5], but allows
for the abstract and implied sense of psychological distance
to which adults are sensitive.

A common neural basis

Several lines of evidence suggest that the anterior cingu-
late cortex (ACC), specifically the dorsal subdivision
(dACC; areas 240 and 320), is involved in the affectively
distressing components of both physical and social pain.
For decades, neurosurgeons have performed cingulo-
tomies, a circumscribed lesioning of the ACC, to treat
intractable chronic pain [6]. Patients who have undergone
cingulotomies for chronic pain report that they are still
able to feel the pain but that it no longer bothers them [6],
highlighting the ACC’s role in the distressing, rather than
the sensory, component of physical pain.

More recently, pain researchers have subdivided
pain experience into two psychological components:
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neuroimaging studies have pointed to the role of the
dACC in the felt unpleasantness of physical pain [8–11];
whereas the somatosensory cortex and posterior insula
have been associated with the sensory-discriminative
aspects of pain [11]. Specifically, increasing levels of
dACC activity correspond with increasing levels of self-
reported pain unpleasantness [8–11]. Thus, individuals
who are dispositionally pain-sensitive show more dACC
activity and report greater levels of perceived unpleasant-
ness to painful stimulation [12].

The dACC has also been shown to relate to social pain
distress in humans and other mammals. The experience of
social pain might be exclusive to mammals because of their
extended need for maternal care, and thus might speci-
fically relate to behaviors and neural structures unique to
mammalian species. Two behavioral characteristics that
separate mammals from their reptilian ancestors are vocal
communication for maintaining mother-infant contact and
the nursing of young along with maternal care [13].
Paralleling these newly acquired behaviors, the cingulate
gyrus also appears for the first time, phylogenetically, in
mammals and thus might contribute to these behaviors [13].

Distress vocalizations, emitted by young animals when
separated from caregivers, rely on an intact cingulate
gyrus for their production [13–15]. Consistent with a
causal role for the ACC in the production of social pain and
distress vocalizations, ablating the dACC in squirrel
monkeys eliminates the spontaneous production of dis-
tress vocalizations [16,17], whereas electrically stimulat-
ing the dACC in macaques leads to the spontaneous
production of distress vocalizations [18,19]. In addition,
ablating the ACC in macaques leads to decreases in
affiliative behavior [20,21], potentially reflecting a reduced
need for social closeness as social separation is no longer
distressing.

The cingulate gyrus also plays a role in maternal
responses to distress vocalizations. Ablating the cingulate
gyrus in rodent mothers disrupts maternal responses to
distress vocalizations, including retrieving pups and keep-
ing them near [22,23]. In one study, the survival rate of rat
pups whose mothers had cingulate lesions was only 12%
[23], highlighting the importance of the cingulate in pro-
moting mother-infant contact and facilitating offspring
survival. Two human neuroimaging studies are generally
consistent with these findings [14,15].

To date, only one study has examined the neural corre-
lates of social pain in humans. This neuroimaging study
investigated the neural correlates of social exclusion [24].
Participants were scanned while playing a computerized
ball-tossing game, supposedly with two others, and were
ultimately excluded from the game (see Figure 1a). When
examining neural activity during exclusion, compared
with inclusion, participants showed increased activity in
dACC (see Figure 1b). The magnitude of dACC activity
correlated strongly with self-reports of social distress felt
during the exclusion episode (see Figure 1c and Box 2).

A common computational basis

Processes that share the same neural circuitry often share
some of the same computational mechanisms [25]. Across
several neuroimaging and computational modeling studies,
it has been shown that the dACC acts as a conflict or
discrepancy detector, activated by behavioral response
conflicts, such as those produced in the Stroop task [26]. In
addition, the dACC might be sensitive to goal conflicts,
expectation violations, and errors more generally [27,28]
(see Box 3). Discrepancy detection in dACC leads to pre-
frontal activations that promote contextually-appropriate,
top-down responses to resolve the discrepancy [29].

Although the phenomenological experience of pain
distress and the computational process of discrepancy
detection have been shown to activate neighboring and
sometimes overlapping regions of dACC [30], the phenom-
enological and computational correlates of dACC activity
have seldom been investigated together. Typically, studies
of physical or social pain have examined the role of dACC
in distress rather than in discrepancy detection, whereas
studies of the computational mechanisms underlying
dACC function have examined its role in discrepancy
detection rather than in distress. In one study that inves-
tigated dACC activity to both a discrepancy-detection task
and a pain task, it was found that these tasks activated
mostly adjacent, but sometimes overlapping sections of

Box 1. The link between social rejection and self-esteem

Many psychologists have assumed that high self-esteem is essential

to positive psychological health [47]. Consistent with this view, high

self-esteem has been associated with psychological well-being,

whereas low self-esteem has been associated with greater depres-

sion, anxiety, and other psychological problems [48]. However,

research suggests that it might not be ‘self-esteem’ per se that

contributes to psychological well-being, but rather the state of social

connectedness that underlies this construct.

Leary and colleagues have proposed ‘sociometer theory’ to

explain why self-esteem appears to be crucial for psychological

health [48,49], maintaining that self-esteem is a measure of the

degree to which an individual is included or excluded by others.

Because of the importance of social ties for human survival, it is

important to be able to monitor one’s acceptance or rejection within a

social group. In the same manner that a fuel gauge provides a read-

out of the amount of gas in a car to prevent empty tanks, self-esteem

might provide a read-out of a person’s inclusionary status to prevent

exclusion [48].

Several studies have provided direct evidence for this theory

showing that increasing degrees of rejection are associated with

more negative self-feelings and reductions in self-esteem [48,49].

Additionally, being socially ostracized or excluded during a compu-

terized, interactive ball-tossing game (Cyberball) played over the

internet, ostensibly with others, causes reductions in self-esteem

[50]. Perhaps most surprising, though, is that even when participants

are told they are playing with a computer program and that the

computerized players are going to stop throwing the ball to them,

participants still report lower self-esteem following the game [51].

Similarly, in an fMRI study of social exclusion [24], participants

were prevented from playing a ball-tossing game, ostensibly

because of technical difficulties, in an ‘implicit exclusion’ condition.

Participants watched the others play the game without them, in what

looked like exclusion, although participants consciously knew the

other players were not excluding them. Nevertheless, implicit exclu-

sion produced dACC activity indistinguishable from explicit exclu-

sion. These studies suggest that the capacity for social exclusion

to cause social pain and decrease self-esteem might be so powerful

that simply viewing a scene that bears a resemblance to rejection

produces these effects. Just as conscious knowledge of a visual

illusion does not prevent it from occurring, conscious knowledge

that one is not actually being actively excluded does not prevent

dACC activity or diminished self-esteem.
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dACC in six subjects [30]. In another study that examined
dACC activity to both a cognitive task (although not a
discrepancy-detection task) and a pain task, it was found
that the cognitive task activated a more anterior and
superior part of dACC; whereas the pain task activated a
more posterior part of dACC [31]. However, no studies
have investigated whether true discrepancy-detection
tasks and pain tasks activate the same region of dACC
within a large sample.

One way to triangulate the relationships between dis-
tress, discrepancy detection, and general dACC activity is

by conceptualizing the dACC as a neural ‘alarm system’.
For an alarm system to function properly, two components
are needed: a discrepancy monitoring system, which detects
deviations from desired standards (e.g. detecting an exces-
sive amount of smoke), and a sounding mechanism which
signals that there is a problem that needs to be addressed
(e.g. an alarm bell ringing). The discrepancy-detection
function of the dACC can be likened to the detection of
excessive smoke whereas pain distress can be likened to
the sound of an alarm bell ringing. Thus, rather than
discrepancy detection and distress being two competing

Figure 1. Methodology and results from an fMRI study of social exclusion [24]. (a) Example of what participants viewed while in the scanner. Participants were included

in the ball-tossing game during one round and excluded during another. (b) Participants showed increased dorsal anterior cingulate cortex (dACC) activity during the

exclusion compared with the inclusion episode. (c) Participants’ levels of self-reported distress correlated highly with dACC activity during the exclusion episode compared

with the inclusion episode.
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explanations of dACC activity, they might actually be
complementary processes underlying the functioning of
this neural alarm system.

One way to test whether discrepancy detection and
distress are complementary processes in the broader
functioning of an alarm system, is to examine whether
individuals who chronically experience more distress
also show greater dACC reactivity during discrepancy
detection. This would suggest that individual differences

operate at the level of the alarm system rather than at the
level of the component processes. In a recent neuroimaging
study [32], individuals with obsessive–compulsive disorder
(OCD), an anxiety disorder characterized by heightened
levels of distress, doubt and worry, were scanned while
performing a conflict monitoring task. Individuals with
OCD, compared with healthy controls, showed signifi-
cantly more dACC activity to high-conflict trials. In addi-
tion, there was a trend such that within the OCD group,
patients with more severe symptoms showed more ACC
activity to conflict than those with less severe symptoms.
In a study we conducted (reported in [1]), neuroticism, the
dispositional tendency to experience distress and negative
affect, correlated strongly (r ¼ 0.76) with ACC activation
to a non-distressing discrepancy-detection task. Together,
these studies suggest that discrepancy detection and dis-
tress might be two complementary processes supporting
the brain’s alarm system in the ACC.

Consequences of the overlap

One of the hypotheses derived from the physical–social
pain overlap is that endogenous and exogenous factors
that enhance sensitivity to one type of pain should enhance
the sensitivity of this alarm system and thus potentiate
sensitivity to the other type of pain as well. Alternatively,
factors that downregulate the sensitivity to one type of
pain should downregulate the sensitivity of the alarm and
thus diminish sensitivity to the other type of pain. Existing
evidence supports both of these claims.

First, when young children experience physical pain,
they experience social pain more easily and more fre-
quently in response to separation from their caregiver [5].
Similarly, individuals with chronic pain disorders are
more likely than healthy controls to have an anxious
attachment style, characterized by a preoccupation with
the commitment status of relationship partners [33] and to
have heightened fears of social evaluation and rejection
[34]. Lastly, rejection-sensitive, compared with non-rejec-
tion-sensitive, individuals report more distress when
watching video clips of people experiencing physical pain
[35]. These findings provide evidence that an enhanced
sensitivity to one type of pain accompanies an enhanced
sensitivity to the other.

Second, increased social support, which reduces social
pain [36], is also associated with a reduction in pain from
chronic ailments, during cancer, following heart surgery,
and during childbirth [37–40]. Experimental evidence
demonstrates similar effects in animals and humans. In
animals, shock punishment is less effective in training
groups of rats than in training rats individually [41], leads
to less immobility in rats in the presence of a companion
[42], and elicits fewer emotional reactions in infant goats
in the presence of their mother [43]. Similarly, in humans,
the presence of social support increases tolerance of elec-
tric shock stimulation [44] and decreases levels of self-
reported pain during a cold-pressor task [45].

Finally, certain drugs have similar regulatory effects on
both physical and social pain. Opiate-based drugs, known
for their effectiveness in alleviating physical pain, lessen
social pain in animals and humans [2]. Additionally, anti-
depressants, often prescribed for anxiety or depression

Box 2. The neural regulation of pain

In addition to dorsal anterior cingulate cortex (dACC), right ventral

prefrontal cortex (RVPFC) was also found to be active in response to

social exclusion (see Figure Ia) [24]. This same prefrontal region was

also activated in a neuroimaging study of placebo effects when

participants received painful stimulation to the gut [8] (Figure Ib) and

has been reported in more than a dozen neuroimaging studies of pain

[52]. Although RVPFC was activated along with dACC in the social

pain and placebo studies, there was a strong negative relationship

between these activations such that greater RVPFC activation was

associated with less dACC activation and less self-reported distress

across participants (c.f. [53]). These results suggest that RVPFC

might serve a self-regulatory function by disrupting the pain distress

associated with dACC activity.

RVPFC activity might be set in motion by thinking about, rather

than merely experiencing, pain. Several studies have reported

increased RVPFC activity when thinking about, labeling, or evaluat-

ing affective stimuli, particularly when thinking about negative

stimuli [8,54]. Additionally, RVPFC has been implicated in the

inhibition of motor, cognitive and affective processes and possesses

efferent connections projecting to dACC [55,56].

Similar reciprocal effects have been observed for RVPFC and the

amygdala. Hariri et al. found that labeling emotionally expressive

faces produced more RVPFC, and less amygdala, activity than

matching emotionally expressive faces to other faces [57]. Parallel-

ing the pain findings, in this study, the participants who generated

more RVPFC activity during the labeling task tended to generate

weaker amygdala activations.

Evolutionarily, such a feedback mechanism from RVPFC to alarm

systems such as the ACC and amygdala makes good sense. These

alarms often trigger a change in our attention to deal with the source

of the threat or to cope in the aftermath. If the alarms continue to

sound at full volume, however, they could detract from the limited

processing capacity of executive processes in prefrontal cortex.

A feedback mechanism in RVPFC might assure that the partial

dampening down of an alarm only occurs after attention has been

turned to the source of the alarm, the point at which continued alarm

sounds become maladaptive.

Figure I. Right ventral prefrontal cortex (RVPFC) activation associated with

(a) social pain regulation, and (b) physical pain regulation. (Part a reproduced

with permission from [24]).
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resulting from social stressors, have recently been found to
alleviate physical pain as well [46] and are now prescribed
regularly to treat chronic pain.

Conclusion

The findings reviewed here suggest that social and
physical pain might rely on overlapping neural processes

in the form of a common neural alarm system. Such an
overlap is adaptive for mammalian survival given the
extended period of immaturity in mammalian young.
Nevertheless, evolution’s solution to ensured nurturance
might have unintentionally produced a lifelong need for
social connection and a corresponding sense of distress
when social connections are broken. A more complete
understanding of the elicitors and regulators of social pain
will benefit from further investigations into its links with
physical pain (see Box 4).
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Box 4. Questions for future research

† How do individual differences in the reactivity of the ACC predict

individual differences in the experience of physical or social pain?

Would an individual who is highly sensitive to the possibility of one

type of pain also be more sensitive to the possibility of the other?

† When does discrepancy detection elicit distress and when does it

not? To what extent do these two processes activate overlapping or

distinct parts of the ACC?

† Aside from the ACC and the opioid system, what are the other

neural regions and relevant neurotransmitters involved in the

physical–social pain overlap?

† If physical and social pain overlap in parts of their underlying

neural circuitry, might these two types of pain show similar

behavioral or health consequences?
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