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Scene perception depends on perceptual organization processes 
that group local visual elements into global structures and seg-
ment them from the scene’s background. A typical example of 
this is contour integration, in which separate but aligned local 
elements are grouped and segmented from a background tex-
ture of similar elements. The processing of global contours 
maintains the Gestalt rule of good continuation, which is also 
common in natural scenes (Geisler, Perry, Super, & Gallogly, 
2001; Sigman, Cecchi, Gilbert, & Magnasco, 2001). Although 
some basic characteristics of contour integration are consistent 
with the “hardwired” neural connectivity in the primary visual 
cortex (e.g., Field, Hayes, & Hess, 1993; Li & Gilbert, 2002), 
recent studies have demonstrated that longitudinal develop-
ment and learning of contour detection continue into adult-
hood. This evidence supports the notion that perceptual 
organization can be adapted to different visual contexts (e.g., 
Kovacs, Kozma, Feher, & Benedek, 1999; Li, Piech, & Gilbert, 
2008; Schwarzkopf, Zhang, & Kourtzi, 2009).

Recently, Li et al. (2008) used extracellular recording in 
monkeys to show that contour-detection training enhanced 
neuronal responses in the primary visual cortex to aligned 
local segments, and these enhanced responses were associated 
with improved perceptual contour detection. However, this 
training effect was eliminated by anesthesia and was limited to 
late phases of the neural response; hence, it may be permeated 

by top-down processes (e.g., Lamme, 1995). These findings 
indicate that contour integration reflects the adaptability of 
visual processes in perceptual organization.

What factors may be critical for learning contour represen-
tations? There are two major possibilities: (a) repeated expo-
sure to aligned local elements and (b) enhanced response to 
features relevant to a target contour. The latter has been sug-
gested by Li et al. (2008), who found significant contour-
related response modulation in the primary visual cortex after 
training with contour detection, but not after exposure to task-
irrelevant contours. However, in that study, exposures to task-
irrelevant contours always preceded exposures to task-relevant 
contours, so the lack of learning for task-irrelevant stimuli 
could have been due to insufficient exposure. There have been 
several recent studies showing that under certain conditions, 
consistent exposure to task-irrelevant features can improve 
detection (e.g., Chun & Jiang, 2003; Deroost & Soetens, 2006; 
Frenkel et al., 2006; Godde, Stauffenberg, Spengler, & Dinse, 
2000), even when the features are presented subliminally dur-
ing learning (Nishina, Seitz, Kawato, & Watanabe, 2007; 
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A critical step in visual perceptual processing is integrating local visual elements into contours so that shapes can be derived 
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Watanabe et al., 2002; Watanabe, Nanez, & Sasaki, 2001; for 
a review, see Seitz & Watanabe, 2009). In the present study, 
we applied the method of subliminal learning to investigate 
the possibility of task-irrelevant contour learning.

It has been demonstrated that subliminal learning—that is, 
decreases in the threshold of detection of an irrelevant back-
ground feature after exposures to unresolved levels of the feature—
requires consistent exposures to a perceptible target along with 
the unresolved background feature (Seitz & Watanabe, 2003). 
This learning is typically highly specific to the feature presented 
during training. To date, subliminal learning has been shown 
only for low-level features that are spatially local, such as local 
dot motion (Watanabe et al., 2001, 2002) or static Gabor patches 
(Nishina et al., 2007). In our study, we assessed whether sub-
liminal learning extends to a level at which local elements are 
integrated into global contours. Providing evidence of sublimi-
nal learning would indicate that contour integration is facilitated 
even by task-irrelevant contour exposure. It is critical to note 
that we took steps to ensure that local (background) properties 
of the displays varied randomly during learning; hence, learning 
should reflect grouping abstracted from the local elements pres-
ent on each learning trial.

In our study, exposure to subliminal task-irrelevant global 
contours took place as participants trained on a task that 
required the identification of a slow rotation in one of two 
sequentially displayed, suprathreshold foreground shapes. A 
subliminal global contour was always presented in the back-
ground of one of the two displays (randomly selected). This 
contour was composed of local, oriented elements and was 
embedded within a random array of similar local elements. 
The other background display included only randomly distrib-
uted oriented elements. Subliminal learning was tested in two 
groups of participants differing only in whether they were 
shown subliminal contours that were paired consistently or 
randomly with a foreground target.

Method
Participants

Nineteen University of Birmingham undergraduate students 
with normal or corrected-to-normal vision were recruited. One 
participant was excluded because of high variability in pre-
liminary tests. Nine participants (7 females and 2 males; mean 
age = 20.7 ± 3.0 years) were included in the consistent-pairing 
training group. The other 9 participants (6 females and 3 males; 
mean age = 21.3 ± 3.6 years) were included in the random-
pairing training group.

Stimuli and apparatus
Stimuli were displayed on a 21-in. Samsung (Ridgefield Park, 
NJ) SyncMaster monitor (with Asus X1300 video card; ATI 
Radeon, Sunnyvale, CA; 1,280 × 1,024; 60-Hz refresh rate) 
driven by an Intel Core 2 computer. Stimuli were generated in 

real time using a MATLAB-based PsychToolBox environment 
(Brainard, 1997). Luminance was linearized by an 8-bit lookup 
table. The stimuli were viewed in a dark room at a distance of 
57 cm, using a chin rest.

Training stimuli. The training stimuli subtended an area of 
21° × 21° and consisted of a central foreground shape (a single 
white line that formed an ellipse, with an average size of  
9.2° × 11.5°) displayed against a background array of local 
elements (see Fig. 1a). The aspect ratio (ranging between 0.76 
and 0.84) and orientation of the shape varied randomly. There 
were two kinds of foreground shapes: target and nontarget.  
A target foreground shape rotated slowly around its center 
(0.72 deg/s on the first trial; rotation speed was adjusted in the 
following trials). Rotation direction varied randomly across 
trials. A nontarget foreground shape was displayed statically. 
The background of all training displays included approxi-
mately 2,166 local, elongated, pseudorandomly positioned 
Gabor elements of the same size (envelope SD = 0.09° along 
the carrier axis and 0.11° along the orthogonal axes), spatial 
frequency (5.1 cycles/deg), and phase (90°). These back-
ground elements were randomly oriented and irrelevant to  
the task.

In half of the stimuli, several local elements were arranged 
to form a global contour drawn from the general class of ellip-
tic contour (average size of 5.3° × 6.3°; the element capacity 
was always 40). These were the trained contours (see Fig. 1c; 
left image). The number of contour elements was set individu-
ally so that, for each participant, the global-contour-detection 
level was one staircase step below his or her detection thresh-
old (see the Procedure section); this level was maintained 
throughout. Random background elements that overlapped a 
contour were excluded. This procedure reduced element den-
sity locally, but the effect was small and spatially random, 
given the small numbers of contour elements and the random 
variation in the distribution of local elements. The subliminal 
contour was presented at the center of the display, always 
within the area bounded by the foreground shape. To minimize 
the contributions of local features to contour learning (see the 
appendix), we varied randomly and independently the aspect 
ratio (between 0.78 and 0.9) and the global orientation of the 
contour, as well as the positions of the local elements making 
up the contour, across trials. Also, the global contours and the 
foreground shapes varied independently of each other in their 
size and global orientation. Consequently, the likelihood of 
pairing locally the foreground target with a specific local ori-
entation was minimal.

Testing stimuli. The testing stimuli subtended an area of 11° × 
11° and consisted of a random array of local elements similar 
to the training background stimuli (there was no foreground 
shape). Half of the displays also included a global contour, and 
half did not. The global shape of the contour was drawn pseu-
dorandomly from one of two shape types: elliptic (trained) and 
angular, triangle-like (not trained; Fig. 1c). The overall display 
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area for the test stimuli (but not the contour area) was smaller 
than the display area for the training stimuli in order to mini-
mize the effects of spatial attention on contour detection. The 
number of contour elements depended on the type of testing 
block (i.e., whether it was a threshold or a constant-level test; 
see the Procedure section).

Procedure
The two participant groups went through an identical experi-
mental procedure during the training blocks and were exposed 
to similar numbers of foreground and background stimuli. 
However, for the consistent-pairing group, foreground targets 
were consistently paired with subliminal background con-
tours, and nontarget foreground shapes were paired with ran-
dom background arrays. For the random-pairing group, the 

presentations of targets and the subliminal contours were not 
correlated. All testing blocks were run in the same manner for 
the two groups.

Each participant completed six experimental sessions com-
prising training blocks and testing blocks (Fig. 2; sessions usu-
ally took about 1.5 hr to complete). Across 20 training blocks 
throughout the six sessions, participants were exposed to the 
task-irrelevant subliminal contours while they attempted to 
identify the foreground target. Contour detection capability was 
assessed during the experiment in two types of testing blocks: 
threshold and constant-level testing. Threshold testing blocks 
assessed each participant’s contour-detection thresholds before 
and after the training period (at the beginning of Session 1 and 
at the end of Session 6, respectively). The difference between 
contour-detection thresholds at these time points indexed the 
level of contour-detection learning. Pretraining threshold data 

Foreground Target:
Slow Rotating Motion

Portion of
Background With
Subliminal Contour

a b

Trained Not Trained
c

right

600 ms Tim
e

600 ms1st Interval

2nd Interval

Feedback

700 ms

Fig. 1.  Stimuli and trial design. Target training stimuli (a) featured a foreground elliptical shape that rotated slowly at a 
rate that was above the participant’s detection threshold. Nontarget stimuli included a similar foreground shape that was 
displayed statically. The stimulus background always included a random array of local Gabor elements, either with or without 
an embedded subliminal global contour. In the training trials (b), two training stimuli were presented sequentially, each for  
600 ms, with an interstimulus interval of 700 ms. One stimulus included the target (i.e., rotating foreground shape), 
and the other stimulus included the nontarget static shape. The task was to report the stimulus interval containing the 
rotating foreground shape. Participants received feedback about their response accuracy at the end of each trial (the 
word “right” in white or the word “wrong” in black; approximately 7° above the fixation point). The background of only 
one of the stimuli included an embedded subliminal contour among the random elements. Examples of trained and not-
trained contour shapes used in threshold and constant-level testing blocks (see Fig. 2) are shown in (c). For the purpose 
of illustration, the contours in this figure include more elements than were typically used in the actual tests.
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were also used to set a subliminal contour level for each par-
ticipant during training. We avoided further assessments of 
contour-detection thresholds during the training period to min-
imize exposures to suprathreshold contours; such exposures 
could potentially facilitate learning (e.g., Ahissar & Hochstein, 
1997). Instead, in intratraining testing blocks during the train-
ing period, a constant-level testing approach was applied to 
trace the accuracy of detecting subliminal contours across ses-
sions. The intratraining testing blocks were run before and 
after each training session (except posttraining at the last ses-
sion). One initial constant-level testing block followed the pre-
training threshold testing blocks and served both to validate 
that the contour level selected to be exposed during training 
was below the participant’s contour-detection threshold and to 
provide a baseline for the intratraining testing blocks.

In threshold testing blocks, the number of contour elements 
on each trial (starting with four-element contours) depended 
on performance on the previous trial, whereas in constant-
level testing blocks, the number of contour elements corre-
sponded to the individual’s subliminal contour-detection level 
and was held constant across the trials. The number of threshold 
testing trials in a block varied, depending on the trial-by-trial 
performance. There were 100 trials per constant-level testing 
block.

Although stimuli and the tasks in the training and the test-
ing blocks differed, the trials in all blocks had a sequential 
two-interval, two-alternative, forced-choice design (Fig. 1b). 
Each trial started with a small, bright central fixation point. 
Approximately 1.5 s later, the fixation point vanished, and the 
first of the two stimuli appeared for 600 ms. After this, the 

Time Within a Session

EXPOSURE
4 Training Blocks

EXPOSURE
4 Training Blocks

EXPOSURE
4 Training  Blocks

EXPOSURE
4 Training Blocks

EXPOSURE
3 Training Blocks

Pretraining
THRESHOLD TEST

Posttraining   
THRESHOLD TEST

Baseline
Intra-

training
TEST

Intra-
training
TEST

Intra-
training
TEST

Intra-
training 
TEST

Intra-
training 
TEST

Intra-
training 
TEST

Intra-
training 
TEST

Intra-
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TEST

Intra-
training 
TEST

Intra-
training 
TEST

EXPOSURE
1 Training

Block
Session 1

Session 2

Session 3

Session 4

Session 5

Session 6

Fig. 2.  Design of the experiment. Each participant took part in six experimental sessions. Exposure to subliminal contours took place during training 
blocks. Contour-detection thresholds were evaluated for each participant at the beginning of Session 1 and at the end of Session 6. The number of 
contour elements selected to be exposed during the training as below-threshold (subliminal) contours was verified in a constant-level testing block 
before training, and the data of that block also served as baseline data for subsequent intratraining constant-level testing blocks.
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display went blank (except for a dim fixation point) for an 
interstimulus interval of 700 ms. The second stimulus then 
appeared for 600 ms. Participants responded by pressing one 
of the two mouse buttons to indicate in which stimulus the 
foreground shape rotated. Response time was unlimited. After 
every two blocks, there was a short break.

Training blocks. In training trials, one stimulus included a 
rotating foreground shape (target) and the other stimulus 
included a static foreground shape (nontarget). The task was to 
identify which stimulus interval contained the rotating target. 
Neither the background array nor the embedded subliminal 
contour were mentioned in the instructions for the task. Each 
participant’s responses were followed by feedback text indi-
cating whether the participant correctly identified the target 
(for 500 ms); then a new trial began. Task difficulty was main-
tained at 84% correct responses by increasing or decreasing 
the target’s rotation speed (using a staircase algorithm). Par-
ticipants were also informed about their overall performance 
level following each block to facilitate their task engagement. 
It took 90 trials on average to complete a training block.

Testing blocks. In both threshold and constant-level testing 
blocks, the stimuli comprised random background elements, 
and one of the two displays per trial included a global contour. 
The task was to identify which interval included a contour. No 
feedback was provided, and participants were informed about 
neither the contour types nor the different types of testing 
blocks. The participants were informed that the contour shape 
might vary across trials and that it could subtend a wide area 
of aperture. Trials with trained contours were pseudorandomly 
interleaved with the trials with not-trained contours. The data 
for the not-trained contours were used to evaluate the transfer 
of learning across different classes of contours.

Threshold testing blocks evaluated contour-detection thresh-
olds (allowing 70.1% correct detection) using a one-up, two-
down staircase algorithm (Wetherill & Levitt, 1965; the 
staircase step was 117.5%, rounded to the nearest integer for 
actual element number). To minimize learning transfer from 
suprathreshold contours, we used upward staircases (the initial 
level consisted of four-element contours). There were two ran-
domly interleaving staircases per block to evaluate thresholds 
for trained and not-trained contour types. Each staircase was 
terminated after nine reversal trials. The last six reversal trials 
were then considered for calculation of the threshold (in log 
units). The testing block was ended after both staircases were 
terminated. For each contour type, the number of contour ele-
ments corresponding to the average across three threshold 
evaluations was considered to be the actual threshold. Sub-
liminal contour level was defined as the number of elements 
corresponding to one staircase step below threshold (rounded 
to the closest integer). This level was always validated in  
the following constant-level testing block (which was used 
also for determining the baseline detection level for this con-
tour). Constant-level testing blocks included only subliminal 

contours (half trained and half not trained). For each contour 
type, accuracy was evaluated across 50 trials.

Results
The results of the pretraining constant-level baseline test vali-
dated, for each participant, a below-threshold detection level 
for the subliminal contours the participant would be exposed 
to during the training (see the Method section and baseline 
results in Fig. 3). Before training, the two participant groups 
showed similar contour-detection thresholds for the trained 
and not-trained contour types (Fig. 4, upper left graph). How-
ever, subsequent to training, the consistent-pairing group had 
a lower detection threshold for the trained contour type rela-
tive to the pretraining threshold (p = .01, paired two-tailed 
t test; Fig. 4, results for trained contours in the upper right 
graph). This demonstrates a large learning effect (Cohen’s d = 
1.75; about 25% threshold change on average; Fig. 4, lower 
graph). In contrast, the random-pairing group showed only a 
small, nonsignificant improvement (approximately 6% thresh-
old change; p = .52). Note that the dependence of learning on 
the consistent pairing of stimulus’ background and foreground 
rules out effects based on task familiarity or on mere exposure 
(which was matched in the consistent-pairing and random-
pairing groups). Instead, it indicates that subliminal learning 
depended on the correlated co-occurrence of the background 
and foreground stimuli.

It is interesting to note that learning was confined to con-
tours of the trained shape type. With the not-trained contour 
shapes, posttraining detection thresholds remained comparable 
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noticeable contour detection (75% correct). Lower and upper error bars 
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to the pretraining thresholds in both the consistent-pairing and 
the random-pairing groups (ps = .33 and .5, respectively; Fig. 4). 
Note, also, that although exposure to subliminal contours was 
effective for inducing contour learning, the subliminal con-
tours remained subliminal throughout regardless of the train-
ing condition or the contour type (Fig. 3). Similarly, there was 
no clear correlation between the initial contour-detection 
accuracy (i.e., during the pretraining constant-level baseline 
test) and the degree of learning (the percentage of threshold 
change; r = −.015 for the trained contour in the consistent-
pairing group). This contradicts the idea that—although low—
the initial detectability level of the subliminal contour accounts 
for learning.

Discussion
The results provide the first evidence that global, perceptual 
organization can be improved by repeated subliminal expo-
sures to task-irrelevant global features. As with the subliminal 
learning of local visual features found in previous studies 

(Watanabe et al., 2001, 2002), consistent co-occurrence of the 
subliminal background contours and relevant foreground tar-
gets was necessary for learning. However, in contrast to previ-
ous demonstrations, the learning we found is unlikely to reflect 
modification of local, low-level processes because the local 
features, as well as overall orientation and extent of the con-
tours, varied randomly across trials. As with low-level sublimi-
nal learning, learning in our study was specific to the trained 
feature (i.e., the type of global contour shape). This suggests 
improved processing of a particular form of grouping relation-
ship. This improvement generalizes across local components 
and global orientations of the particular shape type, but it does 
not extend to other nontrained grouping relationships.

Our findings demonstrate that a contour-related task is not 
essential for contour learning to occur. The findings also con-
tradict an account suggesting that contour learning reflects 
learning to attend to the trained contour, given that in our  
study the contour was always subliminal. At the same time, 
learning depended on particular patterns of exposure. Mere 
exposure to subliminal contours did not suffice for learning. 
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Instead, learning was exposure dependent, as it required con-
sistent co-occurrence of contours and other detectable and rel-
evant signals.

The similarity between our results and previous findings 
for low-level, local, subliminal (thus, implicit) learning effects, 
together with the reliance of that learning on consistent pair-
ing of the subliminal contour and the foreground target, sup-
ports the idea that subliminal learning involves a common, 
Hebbian-like, neuronal plasticity mechanism (Seitz & Dinse, 
2007), which can operate at different levels of cortical pro-
cessing. This basic learning mechanism could be beneficial for 
its “low-cost” coding of co-occurring descriptors of the 
environment.

Appendix
Table A1 summarizes the cross-trial distribution of local  
background elements in contour-related pixels (i.e., with at 
least one event of contour element) across 1,836 simulated 
training trials. At a fine scale corresponding to small recep-
tive fields (e.g., a pixel size of 0.21° × 0.21°), the occurrence 
of any contour element within any local pixel was rare (≤ 5%), 
and the local orientation of the element within the pixel was 
highly variable across trials (circular variance > 0.74; Fisher, 
1995). (We are using pixel to refer to the graining level of the 
analysis—reflecting receptive field size in the eye—not of 
the monitor.) The likelihood of a local element falling in a 
given pixel increased as the pixel grain became coarser, but 
this held both for oriented elements falling on a contour and 
for those that were merely background. The cross-trial vari-
ability in local orientation in coarser pixels became even 
higher.
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. Rx,y,t is the vector summation magnitude across

the orientations of all elements within pixel x,y in trial t (transformed from 180° to 360° scaling), and θ(x,y)t is local 
orientation at pixel x,y in trial t (i.e., the angle of the vector summation; transformed to 180° scaling). The factor 2 in the 
sum reflects a transformation from 180° to 360° circular scaling (see Fisher, 1995). Pixel sizes of 0.21° × 0.21°, 0.42° × 
0.42°, and 0.84° × 0.84° correspond to 100 × 100, 50 × 50, and 25 × 25 grids, respectively.
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