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A Neurobiological Theory of Automaticity in Perceptual Categorization

F. Gregory Ashby, John M. Ennis, and Brian J. Spiering

University of California, Santa Barbara

A biologically detailed computational model is described of how categorization judgments become automatic
in tasks that depend on procedural learning. The model assumes 2 neural pathways from sensory association
cortex to the premotor area that mediates response selection. A longer and slower path projects to the premotor
area via the striatum, globus pallidus, and thalamus. A faster, purely cortical path projects directly to the
premotor area. The model assumes that the subcortical path has greater neural plasticity because of a
dopamine-mediated learning signal from the substantia nigra. In contrast, the cortical-cortical path learns more
slowly via (dopamine independent) Hebbian learning. Because of its greater plasticity, early performance is
dominated by the subcortical path, but the development of automaticity is characterized by a transfer of control
to the faster cortical-cortical projection. The model, called SPEED (Subcortical Pathways Enable Expertise
Development), includes differential equations that describe activation in the relevant brain areas and difference
equations that describe the 2- and 3-factor learning. A variety of simulations are described, showing that the
model accounts for some classic single-cell recording and behavioral results.
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Humans have a remarkable ability to categorize a huge number
of objects instantly and effortlessly. For example, when viewing a
German Shepard, we immediately respond dog rather than wolf,
even though such a categorization might require integrating per-
ceptual information about the shape and size of the ears, the length,
coarseness, and color of the hair, the size of the body, and many
other perceptual features. Yet, this all happens instantly, with little
or no awareness of any specific features. How can such judgments
be made so easily and quickly? And what is their neural basis? The
present article proposes answers to these questions.

Within cognitive psychology, the modern standard for determin-
ing that a behavior has become automatic is if it can be performed
in parallel and without attention (Schneider & Shiffrin, 1977).
Interest in the neural basis of automaticity dates back at least to
Sherrington (1906), who proposed that automatic behaviors be-
come reflexive and that by chaining strings of simple reflexes
together, complex automatic behaviors could be produced. Sher-
rington’s ideas led to the theory that dominated the 20th century:
Novel behaviors require attention and flexible thinking and there-
fore are dependent on cortex, whereas automatic behaviors require
neither of these and so are not mediated primarily by cortex.
Instead, it has long been assumed that automatic behaviors are
primarily mediated by subcortical structures. For example, in his
classic and influential article entitled “In search of the engram,”
Lashley (1950) wrote that “it has been widely held that although
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memory traces are at first formed in the cerebral cortex, they are
finally reduced or transferred by long practice to subcortical lev-
els” (p. 466). This view is still widely held. For example, in a
recent review of the prefrontal cortex (PFC), Fuster (2001) wrote
that “routine, automatic, or overlearned behavioral sequences,
however complex, do not engage the PFC and may be entirely
organized in subcortical structures” (p. 323). In the present article,
we argue exactly the opposite position—namely, that novel be-
haviors are mediated primarily by subcortical structures (i.e., the
basal ganglia), whereas control of these behaviors is passed to
cortex once automaticity is attained.

To our knowledge, this is the first article to propose a neuro-
biologically detailed theory of categorization automaticity. There
is a large literature on how expertise' with a category affects the
representation of its members in visual cortex (e.g., Gauthier &
Tarr, 1997; Humphreys & Forde, 2001; Joseph, 2001). However,
categorization is the ability to respond differently to objects in
separate classes or categories, and thus categorization requires
linking a percept to an action. There is good reason to believe that
this linkage is not encoded in visual cortex (see, e.g., Ashby &
Spiering, 2004). For example, when the category labels of two
stimuli are switched (from good to bad , and vice versa), the firing
properties of cells in the inferotemporal cortex of monkeys that are
sensitive to those stimuli do not change (Rolls, Judge, & Sanghera,
1977). More recent studies have found similar null results with
traditional categorization tasks (Freedman, Riesenhuber, Poggio,
& Miller, 2003; Op de Beeck, Wagemans, & Vogels, 2001; Sigala,
2004; Thomas, Van Hulle, & Vogels, 2001; Vogels, 1999). In each

! In this article, we use the terms automaticity and expertise interchange-
ably. In both cases, we simply mean a state that is acquired following
extensive experience with a particular task. Expertise is defined similarly
in much of the literature. However, it is important to note that in some
fields (but not here), expertise also connotes some extra unique training
(i.e., beyond mere experience).
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case, single-cell recordings showed that the firing properties of
cells in inferotemporal cortex did not change as monkeys learned
to classify visual objects into one of two categories. The cells
showed sensitivity to specific visual images, but category training
did not make them more likely to respond to other stimuli in the
same category, or less likely to respond to stimuli belonging to the
contrasting category.

For these reasons, the theory of categorization automaticity that
we propose is only partly motivated by the large and compelling
literature on object representation in visual cortex. Instead, it was
primarily motivated by the equally large literature on category
learning (for a recent review, see, e.g., Ashby & Maddox, 2005).

Early theories of categorization virtually all assumed that hu-
mans have a single category-learning system that they use to learn
all types of categories (for an exception, see Brooks, 1978). The
dominant theories of this era were prototype theory (e.g., Homa,
Sterling, & Trepel, 1981; Posner & Keele, 1968, 1970; Reed,
1972; Rosch, 1973, 1975; Smith & Minda, 1998), exemplar theory
(Brooks, 1978; Estes, 1986, 1994; Hintzman, 1986; Lamberts,
2000; Medin & Schaffer, 1978; Nosofsky, 1986), and decision
bound theory (Ashby & Gott, 1988; Ashby & Townsend, 1986;
Maddox & Ashby, 1993). More recently, however, the category-
learning field has been dominated by theories that assume that the
learning of different types of category structures is mediated by
different systems (e.g., Ashby, Alfonso-Reese, Turken, & Wal-
dron, 1998; Brooks, 1978; Erickson & Kruschke, 1998; Nosofsky,
Palmeri, & McKinley, 1994). Whereas most multiple systems
theorists agree that one system is explicit and another is implicit,
there is disagreement about the nature of the implicit system. Some
argue for an exemplar-based system (e.g., Erikson & Kruschke,
1998; Nosofsky et al., 1994), some for a perceptual representation
system (e.g., Reber, Stark, & Squire, 1998), and others for a
procedural learning-based system (e.g., Ashby et al., 1998; Ashby,
Ell, & Waldron, 2003; Ashby & Waldron, 1999). A likely possi-
bility is that each proposal has some validity, and multiple implicit
category-learning systems may exist (Ashby & O’Brien, 2005).

The theory of automaticity developed in the present article was
motivated by a category-learning theory called COVIS (Ashby et
al., 1998; Ashby & Valentin, 2005; Ashby & Waldron, 1999).
Briefly, COVIS postulates two systems that compete throughout
learning—a frontal-based explicit system that uses logical reason-
ing and depends on working memory and executive attention and
a basal ganglia-mediated implicit system that uses procedural
learning. A wide variety of category structures are learned in the
procedural learning system, but learning occurs in a slow incre-
mental fashion and is highly dependent on reliable and immediate
feedback. In contrast, a fairly small set of category structures are
learned quickly in the explicit rule-based system—specifically,
those structures that can be learned via an explicit reasoning
process. Tasks that require participants to learn such structures are
called rule-based category-learning tasks. Frequently, the rule that
maximizes accuracy (i.e., the optimal strategy) is easy to describe
verbally. In the most common applications, only one stimulus
dimension is relevant, and the participant’s task is to discover this
relevant dimension and then to map the different dimensional
values to the relevant categories (e.g., as in the Wisconsin Card
Sorting Test).

However, there are many category structures that cannot be
learned in the explicit system. An important example occurs in

information-integration tasks, in which learning requires that par-
ticipants integrate perceptual information across two or more non-
commensurable stimulus dimensions at some predecisional stage
(Ashby & Gott, 1988). Perceptual integration could take many
forms—from computing a weighted linear combination of the
dimensional values to treating the stimulus as a Gestalt. Typically,
the optimal strategy in information-integration tasks is difficult or
impossible to describe verbally (which makes it difficult to dis-
cover via logical reasoning). Real-world examples of information-
integration tasks are common. For example, deciding whether an
x-ray shows a tumor not only involves some explicit reasoning but
also shares many properties with information-integration tasks. For
example, years of training are required, and expert radiologists are
only partially successful at describing their categorization strate-
gies.

The present article specifically addresses the development of
automaticity in tasks in which the procedural learning system
dominates. We begin by reviewing COVIS and especially its
procedural learning system. We then describe a new model called
SPEED (subcortical pathways enable expertise development),
which extends COVIS to expert or automatic behaviors. Next, we
describe a number of empirical tests of this new model and
consider how it relates to existing models of expertise. Finally, we
close with some general discussion and conclusions.

The Procedural Learning System of COVIS

Overview

Figure 1 shows the procedural learning system of COVIS
(Ashby et al., 1998; Ashby & Waldron, 1999). The key structure
is the striatum, which is a major input region of the basal ganglia
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Figure 1. A schematic illustrating the procedural-learning system of
COVIS. Gray projections are excitatory (glutamate), white projections are
inhibitory (GABA), and black projections are dopaminergic; circles denote
cell bodies, and forks denote axon terminals; SN = substantia nigra pars
compacta; GP = internal segment of the globus pallidus; Th = thalamus;
St = striatum (the striatal region shown here is the caudate nucleus); and
BA 8 = Brodmann’s Area 8.
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and comprises a number of structures, including the caudate nu-
cleus and putamen. For visual categories, the critical structure
within the striatum is the caudate nucleus because (in primates) all
of extrastriate visual cortex projects directly to the body and tail of
the caudate. More important, these projections are characterized by
massive convergence, with about 10,000 visual cortical cells con-
verging on each caudate (medium spiny) cell (Wilson, 1995).
COVIS assumes that, through a procedural learning process, each
striatal unit associates an abstract motor program with a large
group of visual cortical cells (i.e., all that project strongly to it).

The medium spiny cells in the body and tail of the caudate send
projections to a variety of prefrontal and premotor cortical areas.
There are two synapses on this pathway. The first synapse on the
principal path is in the internal segment of the globus pallidus (and
substantia nigra pars reticulata), which is a major output structure
within the basal ganglia. The second synapse is in the thalamus,
primarily in the ventral anterior nucleus, pars magnocellualaris
(VAmc). The primary cortical projection from VAmc is to premo-
tor areas and specifically to Brodmann Area 8 and the so-called
supplementary eye fields (Shook, Schlag-Rey, & Schlag, 1991).

Figure 2 shows a close-up view of a synapse between the axon
of a pyramidal cell originating in visual cortex and the dendrite of
a medium spiny cell in the striatum. Note that glutamate projec-
tions from visual cortex and dopamine projections from the sub-
stantia nigra (pars compacta) both synapse on the dendritic spines
of striatal medium spiny cells (e.g., DiFiglia, Pasik, & Pasik, 1978;
Freund, Powell, & Smith, 1984; Smiley, Levey, Ciliax, &
Goldman-Rakic, 1994). COVIS assumes these synapses are the
critical site of learning in the procedural system.

Much is now known about how these cortical-striatal synapses
are strengthened (e.g., via long-term potentiation [LTP]) and
weakened (e.g., via long-term depression [LTD]). Specifically, the
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Figure 2. Close-up of a cortical-striatal synapse. The axon of a visual
cortical cell synapses on the spine of a medium spiny cell in the caudate
nucleus. A dopamine cell from the substantia nigra pars compacta releases
dopamine into the cortical-striatal synaptic junction. Glu = glutamate;
DA = dopamine.

best available evidence indicates that three factors are required to
strengthen synapses of the type shown in Figure 2: (a) strong
presynaptic activation, (b) strong postsynaptic activation, and (c)
dopamine release (e.g., Arbuthnott, Ingham, & Wickens, 2000;
Calabresi, Pisani, Mercuri, & Bernardi, 1996; Nairn, Hemmings,
Walaas, & Greengard, 1988; Pessin et al., 1994; Wickens, 1990,
1993). The first two factors guarantee that postsynaptic N-methyl-
D-aspartate (NMDA) receptors are activated. The NMDA receptor
is a glutamate receptor with a high threshold for activation that
plays a critical role in LTP (e.g., Malenka & Nicoli, 1999). A high
threshold is unlikely to be met by noise, so Factors 1 and 2 mean
that only synapses driven by sensory cortical cells that respond to
the stimulus are likely to be strengthened.

The third factor, dopamine, is widely thought to serve as a
reward-mediated training signal (e.g., Miller, Sanghera, & Ger-
man, 1981; Montague, Dayan, & Sejnowski, 1996; Wickens,
1993). For example, a large literature shows that dopamine firing
increases above baseline following unexpected reward and is de-
pressed below baseline following the omission of an expected
reward (e.g., Hollerman & Schultz, 1998; Mirenowicz & Schultz,
1994; Schultz, 2002). In addition, there is good evidence that
elevated dopamine levels facilitate the strengthening of synapses
(i.e., LTP) at which postsynaptic NMDA receptors have been
activated (e.g., Kerr & Wickens, 2001). In summary, according to
COVIS, synapses in the procedural learning system between visual
cortical cells and medium spiny cells in the caudate are strength-
ened if the visual cortical cell responds strongly to the presented
stimulus (Factors 1 and 2) and the participant is rewarded for
responding correctly (Factor 3).

However, if either of Factors 2 or 3 is missing, then it is thought
that the strength of the synapse will weaken (i.e., LTD will occur;
e.g., Arbuthnott et al., 2000; Calabresi et al., 1996). Note that there
are several ways this could happen. One is if the participant
responds incorrectly (so Factor 3 is missing), and another is if the
visual cortical cell responds only weakly to the presented stimulus.
Thus, this model of LTD predicts that any synapse responsible for
the participant emitting an incorrect response will be weakened, as
will any synapse that is driven by a cell in visual cortex that does
not respond strongly to the presented stimulus. The combination of
this with the three-factor model of LTP produces a powerful
learning algorithm.

The three-factor model of LTP is appealing, but a serious timing
problem must be solved before it can operate effectively. The
problem is that shortly after the stimulus is presented, the cortical-
striatal synapse will be activated, but the dopamine release must
necessarily occur some time later because dopamine release fol-
lows the reward, which follows the response, which follows stim-
ulus presentation. Fortunately, because the spines are somewhat
separated from the bulk of the intracellular medium, it takes
several more seconds to reset the membrane potential in the spines
than in the main cellular compartments (Gamble & Koch, 1987;
MacDermott et al., 1986). Thus, so long as the reward is delivered
within a few seconds of the response, a trace (e.g., calcium-
dependent protein kinase; Hemmings, Walaas, Ouimet, & Green-
gard, 1987; Pessin et al., 1994) will still exist in the critical spines
that were responsible for eliciting the behavior that earned the
reward, and so the correct synapses will be strengthened. Note that
an obvious and exceptionally strong prediction of this model is that
if the feedback is delayed more than a few seconds, then learning
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should be severely disrupted in information-integration tasks. This
prediction was supported by Maddox, Ashby, and Bohil (2003),
who found that delays as short as 2.5 s severely interfered with
information-integration learning, but delays as long as 10 s had no
effect on learning in rule-based tasks of equal difficulty.

Empirical Support for COVIS

A wide variety of evidence supports COVIS as a model of
category learning, at least in rule-based and information-
integration tasks. This evidence comes from single-cell recording
studies, animal lesion experiments, studies with various neuropsy-
chological patient groups, neuroimaging studies, and traditional
cognitive behavioral experiments. A thorough review of all these
data is beyond the scope of this article (for recent reviews, see
Ashby & Maddox, 2005; Ashby & Valentin, 2005; Maddox &
Ashby, 2004; Maddox & Filoteo, 2005). Instead, we briefly review
some of the evidence implicating the basal ganglia in category
learning (for a complete review, see Ashby & Ennis, 2006) and
some behavioral studies in which a priori predictions of the model
were tested.

First, lesion studies in rats and monkeys support the hypothesis
that the tail of the caudate nucleus? is both necessary and sufficient
for visual discrimination learning. Necessity was supported in a
series of studies showing that lesions of the tail of the caudate
impair the ability of animals to learn visual discriminations (e.g.,
McDonald & White, 1993, 1994; Packard, Hirsch, & White, 1989;
Packard & McGaugh, 1992). Sufficiency, which is always more
difficult to establish, was supported in a series of studies in which
all pathways out of visual cortex were lesioned, except those into
the tail of the caudate (e.g., projections into PFC were lesioned by
Eacott & Gaffan, 1991, and Gaffan & Eacott, 1995; projections to
the hippocampus and amygdala were lesioned by Gaffan & Har-
rison, 1987). Critically, none of these lesions affected visual dis-
crimination learning. Another related line of work showed that
visual discrimination learning is not mediated by medial temporal
lobe structures (McDonald & White, 1993, 1994; Packard et al.,
1989). Later in the present article, we model some monkey single-
unit recording data that also strongly implicates the striatum in
category learning.

Human neuropsychological and neuroimaging studies support
these same conclusions. For our purposes, the two most relevant
neuropsychological conditions are Parkinson’s disease (PD), in
which basal ganglia dopamine levels are depleted, and Hunting-
ton’s disease, in which the medium spiny cells of the caudate
nucleus die. Both groups are impaired in information-integration
category learning (Filoteo, Maddox, & Davis, 2001a; Filoteo,
Maddox, Salmon, & Song, 2005; Knowlton, Mangels, & Squire,
1996). As an important control, Filoteo, Maddox, and Davis
(2001b) reported normal performance by amnesiacs in a difficult
multiday information-integration task with nonlinearly separable
categories that required hundreds of training trials. In the func-
tional magnetic resonance imaging (fMRI) domain, Seger and
Cincotta (2002) trained participants in an information-integration
task before scanning and reported significant striatal and lateral
occipital activation during performance of the task. Nomura et al.
(2007) had participants learn either rule-based or information-
integration category structures during fMRI. Successful rule-based
learning was associated with increased activation in frontal areas,

including the anterior medial temporal lobes, whereas successful
information-integration learning was associated with increased
activation in the body of the caudate nucleus.

There have also been a number of cognitive behavioral studies
in which specific parameter-free a priori predictions made by
COVIS have been tested. One set of experiments tested COVIS
predictions about the nature and timing of trial-by-trial feedback
about response accuracy. In particular, COVIS predicts that, be-
cause the explicit system has access to working memory and
executive attention, it should be relatively unaffected by changes
in the timing and form of the feedback signal. In contrast, as
described above, COVIS predicts that effective learning is possible
in the procedural system only if feedback is provided immediately
following the response. Several studies support these predictions.
First, in the absence of any trial-by-trial feedback about response
accuracy, people can learn some rule-based categories, but there is
no evidence that they can learn information-integration categories
(Ashby, Queller, & Berretty, 1999). Second, observational training
(in which the category label is shown before stimulus presentation)
is as effective as traditional feedback training with rule-based
categories, but with information-integration categories, feedback
training is significantly more effective than observational training
(Ashby, Maddox, & Bohil, 2002). Third, as mentioned above,
information-integration category learning is impaired if the feed-
back signal is delayed by as little as 2.5 s after the response,
whereas delays as long as 10 s had no effect on rule-based category
learning (Maddox et al., 2003).

Another series of studies tested the fundamental assumption of
COVIS that information-integration categorization uses procedural
learning, whereas rule-based category learning does not. In the
first study, neither switching hands on the response keys nor
switching the keys interfered with rule-based category learning,
whereas with information-integration categories, switching hands
on the response keys caused no interference, but switching the
locations of the response keys caused a significant decrease in
accuracy (Ashby et al., 2003). Thus, it appears that response
locations are learned in information-integration categorization but
not specific motor programs. This hypothesis was supported in a
separate study by Maddox, Bohil, and Ing (2004). These
information-integration results essentially replicate results found
with traditional procedural learning tasks (Willingham, Wells,
Farrell, & Stemwedel, 2000), and therefore they provide direct
evidence of procedural learning in perceptual categorization.

A third series of studies tested the COVIS prediction that
working memory and executive attention are critical for rule-based
category learning but not for information-integration category
learning. First, several studies reported that a simultaneous sec-
ondary task requiring working memory and executive attention
had a massive detrimental effect on the ability of participants to
learn simple rule-based categories, but it had no significant effect
on learning information-integration categories (Waldron & Ashby,
2001; Zeithamova & Maddox, 20006).

Second, Maddox, Ashby, Ing, and Pickering (2004) tested the
COVIS prediction that feedback processing requires attention and

2 In rats, the caudate and putamen are not distinct. So in the rat studies,
the lesions were to an area of the striatum homologous to the primate tail
of the caudate.
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effort in rule-based category learning but not in information-
integration category learning. Specifically, they showed that lim-
iting the amount of time available to process the feedback signal
significantly interfered with rule-based category learning, but it
had no effect on information-integration learning.

The results suggesting that working memory and executive
attention play at most a minor role in information-integration
category learning argue against a major role for the PFC in these
tasks. Even so, this view is challenged by some well-known
single-unit recording results of Freedman, Riesenhuber, Poggio,
and Miller (2001, 2002; Freedman et al., 2003), who reported
neurons in lateral PFC that show category-specific responding in a
task in which monkeys were taught to categorize computer-
generated images as dogs or cats. On each trial, the monkey was
shown two successive images, separated by a brief delay. If the
two images were from the same category, then the monkey’s task
was to release a lever, whereas if the images were from different
categories, then the monkey was to keep holding the lever. Single-
unit recordings revealed many neurons in lateral PFC that seemed
to respond to the category membership of the visual stimulus; that
is, each of these cells responded almost equally to almost all
members of one category and showed little or no response to
members of the contrasting category.

There are at least two interpretations of the Freedman et al.
(2001, 2002, 2003) results that are consistent with all other results
described in the present article. One possibility is that the monkeys
discovered a simple rule that allowed them to respond correctly. If
so, then the Freedman et al. results are consistent with all the other
results implicating the PFC in rule learning and rule use. A second
possibility, however, is that the monkeys learned to categorize the
images using some similarity-based system and that the results of
each categorization judgment were loaded into PFC-based work-
ing memory (e.g., as in the model of Ashby, Ell, Valentin, &
Casale, 2005). It is important to note, however, that if a similarity-
based process was used, then it is not likely to have been the
procedural learning system of COVIS. This is because in the
Freedman et al. design, when the stimuli were in the category
“dogs,” sometimes the monkeys released the lever and sometimes
they held it. The same was true for the category “cats.” Thus, there
was no consistent mapping from category to response. As men-
tioned above, several studies have shown that a consistent
category—response mapping is required for efficient information-
integration category learning (Ashby et al., 2003; Maddox et al.,
2004).

SPEED: A New Model of Automaticity

A Neural Account of Automaticity

One way to develop a neural model of automatic categorization,
at least in information-integration tasks, might be to begin with the
COVIS procedural learning system. Unfortunately, however, there
are many reasons to believe that the neural mechanisms and
pathways that mediate category learning are different from the
neural structures that mediate automatic responses to highly
learned categories. Thus, COVIS is inappropriate as a model of
expertise. Later in the present article, we specifically model sev-
eral data sets that convincingly demonstrate the inability of COVIS
to model highly overlearned behaviors. For now, though, we

simply describe one suggestive result. In particular, many neuro-
psychological groups that are impaired in category learning (e.g.,
frontal patients and PD patients) do not lose old, familiar catego-
ries (e.g., fruits and tools). Similarly, there is no evidence that
people who lose a familiar category (i.e., who develop a category-
specific agnosia) develop any general category-learning deficits
(although we know of no studies that directly address this issue).

One way to begin developing a model of categorization exper-
tise is to ask what neural events must transpire when a categori-
zation response is made automatically. First, if the categorization
stimulus is visual, then it is natural to assume there must be
activation in some visual cortical region. And if a motor response
is made, then there presumably must eventually be activation in
some region of premotor or motor cortex. The theoretical difficulty
is in determining how the signal makes its way from visual cortex
to premotor cortex. COVIS assumes that the critical path is from
visual cortex to the basal ganglia, then to the thalamus, and finally
to premotor cortex. But there are also direct cortical-cortical pro-
jections from visual association areas to premotor cortex (e.g.,
Heimer, 1995). Because these involve only one synapse, they
could be faster than the subcortical path proposed by COVIS
(which includes at least four synapses).

COVIS postulates that procedural learning depends on the
longer subcortical path because of the reward-mediated training
signal provided by the dopamine input from the substantia nigra.
This three-factor learning causes strengthening of synapses that
were active during correct responses and weakening of synapses
that were active during errors. As it happens, there is also a
prominent (and well-known) dopamine projection into frontal cor-
tex from the ventral tegmental area (VTA), and the best available
evidence indicates that the environmental conditions that cause
VTA dopamine cells to fire are essentially the same as the condi-
tions that cause substantia nigra dopamine cells to fire (Schultz,
1998; Schultz, Dayan, & Montague, 1997). In other words, VTA
dopamine cells will also increase their firing following an unex-
pected reward, and their firing will be depressed below baseline
following an unexpected failure to receive a reward. So an obvious
question is why is the subcortical pathway needed? Why is cate-
gory learning not mediated by three-factor learning at cortical-
cortical synapses?

A necessary feature of any reward-mediated training signal is
high-temporal resolution. If the first response is correct, then
dopamine must be released into the relevant synapses quickly,
before the critical traces disappear. But after the correct synapses
have been strengthened, it is also essential that excess dopamine be
quickly cleared from the synapse. If it is not, and the next response
is an error, then the residual dopamine will strengthen inappropri-
ate synapses—namely, those responsible for producing the incor-
rect response. This would undo the beneficial learning that oc-
curred following correct responses and prevent discrimination
learning.

Within the body and tail of the caudate nucleus, dopamine
reuptake is exceptionally fast (e.g., Cragg, Rice, & Greenfield,
1997), and many researchers have proposed the same role for
striatal dopamine in three-factor learning that we propose here
(e.g., Miller et al., 1981; Montague et al., 1996; Wickens, 1993).
In contrast, in frontal cortex, dopamine reuptake is much slower
(for reviews, see, e.g., Brannon & Roth, 1983; Seamans & Yang,
2004). For example, the delivery of a single food pellet to a hungry
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rat increases dopamine levels in PFC for approximately 30 mins
(Feenstra & Botterblom, 1996). We contend that this poor tempo-
ral resolution effectively rules out dopamine as a reward-mediated
training signal in frontal cortex.’

To be clear, we are not arguing that dopamine does not facilitate
LTP at frontal cortical synapses. In fact, the biochemical cascade
initiated by dopamine in the medium spiny cells of the caudate that
eventually promotes LTP will likely have the same effect in frontal
cortical glutamate cells. Thus, if the first response is correct, then
frontal cortical dopamine levels should rise, and the synapses
responsible for eliciting the correct response should be strength-
ened. However, the elevated cortical dopamine levels that last for
many minutes should cause all synapses that are subsequently
active to be strengthened, whether their activation elicited a correct
response or an error. From a computational perspective, this means
that learning in frontal cortex is governed by classical two-factor,
or Hebbian learning; that is, a synapse is strengthened anytime
there is both pre- and postsynaptic activation. With Hebbian learn-
ing, active synapses are strengthened on trials when both correct
and incorrect responses are made, and as a result, cortical-cortical
projections governed by Hebbian learning, by themselves, are
incapable of discrimination learning.

When a stimulus is presented early in learning, activation from
the visual association units that encode the perceptual representa-
tion of that stimulus will presumably be propagated to all relevant
premotor units. If somehow the correct postsynaptic premotor
target was activated more strongly than the incorrect targets, then
Hebbian learning would strengthen the correct synapse more than
the incorrect synapses (because the product of the pre- and
postsynaptic activations would be greatest at the correct synapse).
We propose that this is precisely the major role of the subcortical
path through the striatum. Specifically, via three-factor (reward-
mediated) learning, we propose that the slower subcortical path
activates the correct postsynaptic target on the cortical path, which
allows the appropriate cortical-cortical synapses in the premotor
area to then be strengthened via classical (two-factor) Hebbian
learning. In this way, control is gradually passed from the slower
path through the basal ganglia to the faster cortical-cortical path.
Thus, according to this model, the development of categorization
automaticity is a gradual process via which control is passed from
the subcortical category-learning systems to cortical-cortical con-
nections from sensory association areas directly to premotor cor-
tex. To our knowledge, this idea was first proposed by Ashby et al.
(1998, p. 453). We call the resulting theory, which is developed
here for the first time, SPEED.

The basic idea underlying SPEED—that pathways through the
basal ganglia facilitate the development of more permanent
cortical-cortical projections—is similar to proposals that the hip-
pocampus facilitates the development of more permanent episodic
and semantic memories in cortex. For example, McClelland, Mc-
Naughton, and O’Reilly (1995) argued that “the hippocampal
memory system ... can be viewed ... as the teacher of the
neocortical processing system” (p. 424). The major difference, of
course, is that the hippocampal memory system is thought to
mediate the consolidation of declarative memories (e.g., Squire,
Stark, & Clark, 2004), whereas SPEED applies to tasks that are
mediated by procedural memory. Declarative memory systems
clearly have their role in category learning (Ashby & O’Brien,
2005), although a wide variety of evidence suggests that in

information-integration tasks, the basal ganglia play a more im-
portant role than the hippocampus and other medial temporal lobe
structures (for reviews of this evidence, see Ashby & Ennis, 2006;
Ashby & Maddox, 2005).

Although there is good evidence that the striatum helps mediate
procedural learning, it is important to note that many models of
executive function also posit a key role for the striatum. For
example, many models assume the striatum serves to gate inputs
into working memory and/or to facilitate switching of executive
attention (e.g., Ashby et al., 2005; Beiser & Houk, 1998; Braver &
Cohen, 2000; Frank, Loughry, & O’Reilly, 2001; Humphries,
Stewart, & Gurney, 2006; Monchi, Taylor, & Dagher, 2000;
O’Reilly, Braver, & Cohen, 1999; O’Reilly & Frank, 2006). Crit-
ically, however, these models generally focus on anterior regions
of the dorsal striatum, such as the head of the caudate nucleus,
because of their reciprocal connections with PFC. In contrast,
SPEED focuses on posterior regions of the dorsal striatum (e.g.,
body and tail of the caudate nucleus) because of their pronounced
cortical input from sensory association areas. Thus, SPEED does
not contradict any of these models of executive function.

Figure 3 shows a schematic of SPEED for the case in which
there are two contrasting visual categories. Even when it is spec-
ified at this crude level, SPEED could explain some seemingly
perplexing results. For example, it explains why diseases of the
basal ganglia that impair information-integration category learning
(e.g., PD, Huntington’s disease) do not cause people to lose old
familiar categories. In addition, it might provide a neurobiological
rationale for the well-known speed-up in categorization response
time (RT) that occurs as people gain experience with the categories
(e.g., Nosofsky & Palmeri, 1997). A rigorous test of the theory,
though, requires specifying the model in more detail. In the next
section, we derive a computational version of SPEED that makes
precise quantitative predictions in a wide variety of experimental
paradigms.

Computational Modeling

As specified so far, the theory identifies relevant brain areas and
their interconnections. To develop a computational version of
SPEED requires writing a set of equations that describe the neural
activation in each of the brain regions shown in Figure 3. This
must be done even for the subcortical component of SPEED that
was motivated by the procedural learning system of COVIS be-
cause the previous computational versions of COVIS have only
been developed at more abstract levels (i.e., not at the level of
neural networks). In addition, because this is a model of learning,
we must also specify exactly how learning is implemented in the
network. The main challenge is to select an appropriate level at
which to direct the equations. If too global a level is chosen, then
the resulting model will lack biological plausibility, and, as a
result, it will be unable to account for neuroscience data. If the

3 Although frontal-cortical dopamine appears to operate too slowly to
serve as a reward-mediated training signal, this slow action makes possible
a number of other hypothesized benefits. For example, a wide variety of
evidence suggests that modest increases in frontal dopamine levels facili-
tate working memory (Ashby, Valentin, & Turken, 2002; Williams &
Goldman-Rakic, 1995) and creative problem solving (Ashby, Isen, &
Turken, 1999).
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Figure 3. Schematic illustrating the subcortical pathways enable expertise development (SPEED) model of
expertise in the case of two contrasting categories, A and B. Solid black lines denote excitatory (glutamate)
projections, dashed lines denote inhibitory (GABAergic) projections, and solid gray lines denote dopamine

projections.

model is too detailed, then it is likely to be too complex to account
for human behavioral data.

Briefly, our approach is to model the functional interconnections
between brain regions (as shown in Figure 3) and two key bio-
physical properties that are shared by all neurons: (a) saturation—
every neuron has a maximum firing rate and (b) decay—if all
inputs to a neuron cease, then the activation in that cell will decay
to some baseline firing level. In our applications, these biophysical
properties, together with the hypothesized interconnections, have
been sufficient for modeling single-cell recording data, neuroim-
aging data, and human behavioral data (Ashby et al., 2005; Ashby
& Valentin, 2006), but as the modeling efforts focus more heavily
on neuroscience data, it may be necessary to increase the com-
plexity of the models by trying to incorporate other, more subtle
biophysical properties. For a thorough discussion of all the com-
putational methods that were used in the present article, see Ashby
and Valentin (2006). The next section describes the differential
equations that result from following these methods. These equa-
tions describe how neural activation changes dynamically after
stimulus presentation for each of the brain regions shown in
Figure 3.

Activation Equations

To begin, we model sensory cortex as an ordered array of up to
10,000 units, each tuned to a different stimulus. We assume that
each unit responds maximally when its preferred stimulus is pre-
sented and that its response decreases as a Gaussian function of the
distance in stimulus space between the stimulus preferred by that
unit and the presented stimulus.* For the present applications, it
suffices to assume an exceedingly simple model of sensory cortex
in which the activation of each unit is either off (with activation 0)
or equal to some positive constant value during the duration of

stimulus presentation. Specifically, we assume that when a stim-
ulus is presented, the activation in sensory cortical unit K at time
t is given by

1 dKstimulus)?

Ix(1) = E (1)

—e
a
where « is a constant, and d(K, stimulus) is the distance (in
stimulus space) between the stimulus preferred by unit K and the
presented stimulus. Equation 1, which is an example of a radial
basis function (e.g., Buhmann, 2003), is a popular method for
modeling the receptive fields of sensory units, in both models of
categorization (e.g., Kruschke, 1992) and models of other tasks
(e.g., Joo-Er, Wu, Lu, & Toh, 2002; Oglesby & Mason, 1991;
Riesenhuber & Poggio, 1999; Rosenblum, Yacoob, & Davis,
1996).

We assume that the activation in striatal unit J at time ¢, denoted
S (), is determined by the weighted sum of activations in all visual
cortical cells that project to it and by lateral inhibition from other
medium spiny cells:

ds
L;;t) = |: EWK,J(n)IK(t):| [1—=S81)]
K

= BsSu() = YoLS)(1) = Spuse] + o €DSAN[1 — Sy(1)], (2)

where By, Vg, Spases and Og are constants, M # J, I (1) is the input
from visual cortical unit K at time #, wy ,(n) is the strength of the
synapse between cortical unit K and striatal cell J on trial n, and
€(t) is white noise.

+We make no other assumptions about the structure of sensory cortex.
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An intuitive description of the derivative on the left is that it
equals the change in activation in the striatal cell. Excitatory inputs
to the cell increase this activation and hence will appear on the
right as a positive term, and inhibitory inputs decrease the activa-
tion and so appear on the right as a negative term. The [1 — S,(7)]
terms on the right model saturation. Because of these terms,
neither the excitatory activation in the spines nor the noise can
drive activation above 1 (which we have set as the arbitrary upper
limit on activation). Similarly, the S(¢) in the last term on the right
prevents noise from driving activation below 0. The second term
on the right is a standard model of lateral inhibition (e.g., Usher &
McClelland, 2001). The third term on the right models decay. If all
inputs are zero, then this term guarantees that activation decays
back to baseline (i.e., S,,,.). The last term in Equation 2 models
noise.” Equation 2 assumes there are only two medium spiny cells
(J and M).

Following this same approach (i.e., see Ashby & Valentin, 2006,
for details on the approach), it is straightforward to write the other
relevant differential equations. Activation in the globus pallidus at
time ¢, denoted by G (1), is described by

dG,(1)
dt

= = agS(1)Gy(1) = Bl GA1) = Gueel, (3)

where ag, Bg, and G, are constants. The first term models the
inhibitory input from the striatum, and the second term ensures that
in the absence of any other inputs, activation will decay to baseline

Gbase'
Similarly, activation in the thalamus at time t is given by
dTy(1)
dt = = aTGJ(t)TJ(t) - BT[TJ(I) - Tbase]’ (4)

where o, B, and T, are constants. The first term models the
inhibitory input from the globus pallidus, and the second term
models decay to 7,,.. The ventral anterior and ventral lateral
thalamic nuclei of the thalamus also receive a variety of excitatory
inputs (e.g., cerebellum, PFC). We model these via 7., which
we set to a value that is higher than the true spontaneous firing rate.
For our purposes, the most important of these excitatory inputs is
from PFC (e.g., Anderson & DeVito, 1987). The PFC input is
critical because striatal firing, by itself, can never trigger a motor
response. When the striatum fires, it disinhibits the thalamus (i.e.,
by reducing pallidal inhibition), but it does not excite the thalamus.
For this reason, random sensory stimuli that are encountered as one
moves through the world could cause the striatum to fire, but this
firing will typically not elicit an unintended motor response. In a
category-learning task, instructions from an experimenter about
how to respond could cause the PFC input to thalamus to increase,
thereby priming the relevant response goals (e.g., “press the button
on the left if the stimulus is a member of category A”). Because of
the tonic inhibition from the globus pallidus, however, this PFC
input is not enough to trigger a response. Instead, the striatum must
first inhibit the globus pallidus, an event that would allow the
thalamus to trigger one of the primed motor response goals.
Finally, activation in premotor cortex at time ¢ is given by

dE (1)
o= | )+ Do) |[1 = Ex)]
K

— BeEx(t) = YA Ef1) — Epu] + 0£E ()1 — Ex1)], (5)

where oz, Bg, Vg O and E, ., are constants; [,(f) again repre-
sents the input from visual cortical unit K at time 7; v, ,(n) is the
strength of the synapse between visual cortical unit K and premo-
tor unit J on trial n; and €(¢) is white noise. The second term on the
right models lateral inhibition (mediated by GABAergic interneu-
rons) in the same way as in Equation 2.

In tasks with only one response (e.g., Applications 2 and 3
below), we assume a response is initiated when the integrated
activation in the premotor unit first exceeds a threshold 7. When
there are two possible responses, A and B, (Applications 1 and 4),
evidence suggests that cortical units in premotor areas are sensitive
to the cumulated difference in evidence favoring the two alterna-
tives (e.g., Shadlen & Newsome, 2001):

A, p(t) = f[EA([) — Ey(1)]dr. (6)

In line with these results, we assume that in such tasks, response A
is given when A, 4(7) first exceeds 7, and response B is given when
this integral is first less than — 7. These response selection as-
sumptions define a diffusion process (Ashby, 2000; Ratcliff, 1978)
in which the drift rate is determined by the neural pathways
postulated by SPEED.

Learning Equations

Although, of course, we expect some neural plasticity to occur
at every synapse, the two critical synapses for automaticity are
between the cells in sensory association cortex and the spines of
the striatal medium spiny cells and between sensory association
cortex and premotor cortex. A critical assumption of the theory
proposed here is that these two synapses are modified according to
qualitatively different rules. In particular, for the reasons described
above, we assume that learning within the striatum is mediated by
the three-factor learning rule, whereas in cortex, only two factors
are required.

Two-Factor Learning. The two-factor cortical-cortical learn-
ing is also commonly referred to as Hebbian learning. In tradi-
tional Hebbian learning models, each synapse is strengthened by
an amount proportional to the product of the pre- and postsynaptic
activations. However, because postsynaptic NMDA receptor acti-
vation is required for LTP, we modify the traditional model to
assume that all active synapses are strengthened in which the
postsynaptic activation exceeds the NMDA receptor threshold,
regardless of whether the preceding response was correct or
incorrect. We also assume that active synapses in which the
postsynaptic activation falls below the NMDA threshold are
weakened.

Let vy ;(n) denote the strength of the synapse on trial n between
visual cortical unit K and premotor unit J. Then, we model two-
factor learning via the difference equation:

5 The saturation and decay multipliers guarantee that the noise variance
is greatest when activation levels are intermediate. This property of the
model mimics the variance of a binomial distribution, which is greatest
when the probability p = .5. In a binomial distribution (and in our noise
model), when p (or activation) is near O or 1, there is very little variance
because of the nearby hard limit.
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vin + 1) =vg,(n) + avzlk(t)[ EEJ(t) - 6NMDA:|

X [1 = ven)] - BvElk(z)[eNMm - EE,(r)] visn),  (7)

where 2 (t) is the total activation over the course of the trial in
sensory cortical unit K; 2.E,(t) is the total activation in premotor
unit J; and «,, B,, and O,,,,4 are constants. 0,,,,, denotes the
activation threshold of the NMDA receptor. The function [f(£)]™
equals f(z) when f(r) > 0, and O when f(r) = 0. The second
(positive) term describes the conditions under which LTP occurs
(premotor activation above the threshold for NMDA receptor
activation) and the third (negative) term describes conditions that
produce LTD (premotor activation below NMDA threshold). Note
that this model assumes that the change in synaptic strength is
proportional to the product of the pre- and postsynaptic activations
(and the final rate limiting term that prevents the strength of the
synapse from exceeding 1).

Three-Factor Learning. The three factors thought to be nec-
essary to strengthen cortical-striatal synapses are (a) strong pre-
synaptic activation, (b) strong postsynaptic activation, and (c)
dopamine levels above baseline. According to this model, syn-
apses between cells in sensory association cortex and medium
spiny cells in the striatum are strengthened if the cortical cell
responds strongly to the presented stimulus (Factors 1 and 2 are
present) and the participant is rewarded for responding correctly
(Factor 3). However, the strength of the synapse will weaken if the
participant emits an incorrect response (Factor 3 is missing), or if
the synapse is driven by a cell in sensory cortex that does not fire
strongly to the stimulus (Factors 1 and 2 are missing). We also
assume that cortical-striatal synaptic strength slowly decays if
dopamine remains at baseline levels for long periods of time
(which allows a kind of slow forgetting).

Let wy ;(n) denote the strength of the synapse on trial n between
sensory cortical unit K and striatal unit J. We model three-factor
learning as follows:

w(n+ 1) = wg,(n)

7+

+ o, D) 2841) = Oupa | [D(1) = Dy T1 = wics(m)]

q+

— Bu k()| 2841) = Oyups | [Dyase — D(n)] i s(n)

+

- 'YWEIK(U Onmpa — ESJ( 0| wgsn)

1 - [D(n) - Dbase]+
B ¢W< b= ] - Dbaxe

)w,(‘,(n), @)

where 2.S,(t) is the total activation in striatal unit J; 6,,,,, again
denotes the activation threshold of the NMDA receptor; D, is
the baseline firing rate of dopamine cells; D(n) is the amount of
dopamine released following feedback on trial n; and o, By Vs
and ¢, are constants. The second line describes the conditions
under which LTP occurs (striatal activation above the threshold for

NMDA receptor activation and dopamine above baseline), and
lines three and four describe conditions that produce LTD (striatal
activation above the NMDA threshold but dopamine below base-
line, striatal activation below NMDA threshold). The last line
models a slow decay in synaptic strength that occurs when dopa-
mine stays at baseline levels for extended time periods.

In all simulations, we set the initial cortical-striatal weights
w; ,(0) to be strong enough to cause one or more striatal units to
fire when a novel stimulus is first presented. Without this property,
postsynaptic activation would not exceed the NMDA receptor
threshold, and an initial response would never occur (i.e., because
LTP would be precluded). Fortunately, there is strong evidence
supporting this assumption. Caan, Perrett, and Rolls (1984) re-
corded from single units in the tail of the caudate nucleus in
monkeys as they passively viewed novel visual stimuli. The initial
presentation of a stimulus (i.e., that was within the receptive field
of the medium spiny cell) elicited a vigorous caudate response,
which quickly habituated upon repeated presentations of the same
stimulus. Because no response was required of the animals in this
experiment, and no rewards were given, the learning component of
SPEED predicts this habituation.

This model of three-factor learning requires that we specify the
amount of dopamine released on every trial in response to the
feedback signal. Although there are a number of powerful models
of dopamine release (e.g., Brown, Bullock, & Grossberg, 1999),
these models are quite complicated, in part because the midbrain
dopamine areas receive a diverse array of excitatory and inhibitory
inputs, and different classes of dopamine receptors have different
effects. For our purposes, however, most of this complexity can be
ignored. For example, we have no need to predict dynamic changes in
dopamine release. In fact, the only critical variable is the amount of
dopamine released to the feedback signal on each trial. Toward this
end, the key empirical results are (e.g., Schultz et al., 1997; Tobler,
Dickinson, & Schultz, 2003) (a) midbrain dopamine cells have a high
spontaneous firing rate; (b) dopamine release increases above baseline
following unexpected reward, and the more unexpected the reward,
the greater the release; and (c) dopamine release decreases below
baseline following unexpected absence of reward, and the more
unexpected the absence, the greater the decrease.

A simple model that incorporates these properties is as follows:
If the response on trial n was correct, then the amount of dopamine
released equals

D(n) = Dy, + [1 = P(C)J(1 — Dyuy)s 9)
whereas if the response on trial n was incorrect, then,
D(}’l) = Dhase - P(C)Dbase’ (10)

where P(C) is the current probability of a correct response. For
practical implementation, we estimated P(C) as the proportion
correct over the previous 50 trials. Note that according to this
simple model, dopamine release is greatest following a correct
response when accuracy is low—that is, when the reward is
unexpected. As accuracy increases and the participant is better able
to predict when a reward will occur, dopamine release decreases to
the point that after 50 correct responses in a row, another correct
response leaves dopamine at baseline. The error model is similar.
When errors are unexpected (i.e., accuracy is high), an error
depresses dopamine release well below baseline, whereas expected
errors have little (or no) effect on dopamine release.
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Figure 4. Schematics illustrating the subcortical pathways enable expertise development (SPEED) model of
expertise on a trial when a stimulus from Category A is presented. Figure 4a depicts a trial early in learning. The
graphs beside each brain area show the simulated solutions of the differential equations that define the model (see
the Appendix). Figure 4b is the same as 4a, except later in training, after expertise has developed. Solid black
lines denote excitatory (glutamate) projections, dashed lines denote inhibitory (GABAergic) projections, and

solid gray lines denote dopamine projections.

Applying the Model

Figure 3 illustrates how SPEED might be applied to an
information-integration task with two categories, A and B. Be-
cause there are two categories, the model includes two units in all
brain regions except sensory cortex, which includes 10,000 units.
Each medium spiny cell includes 10,000 spines— one for each unit
in sensory cortex. Each unit in sensory cortex projects to a spine on
each medium spiny cell with an initial synaptic strength that is

randomly determined. Similarly, every sensory cortical unit
projects to its own synapse on each premotor unit, and the initial
strength of these 20,000 synapses is set to zero.°

Figure 4a shows the pathways in SPEED leading to an A
response on a trial early in training when the stimulus is an

¢ There is no need to make the initial cortical-cortical synaptic strengths
random because these synapses do not control early performance.
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exemplar from Category A. The plots beside the striatum, globus
pallidus, thalamus, and premotor units are simulated single trials
derived from the differential equations that describe activation in
each brain region. Note that presentation of the stimulus causes
activation in striatal unit A to increase. The striatum sends an
inhibitory projection to globus pallidus, so striatal activation in-
hibits the high spontaneous firing rate of pallidal units. Globus
pallidus tonically inhibits the thalamus, so pallidal deactivation
releases the thalamus from tonic inhibition, and, as a result, tha-
lamic activation increases (presumably because of tonic excitatory
input from PFC). Finally, thalamus excites cortex, so thalamic
activation excites the premotor unit enough to trigger a response.
Note that the strength of the cortical-cortical synapses is not great
enough to allow sensory cortex to drive activation in the premotor
unit high enough to trigger a response. As a result, SPEED re-
sponds correctly, but with a long RT.

Figure 4b is the same as Figure 4a, except for a trial much later
in training, after expertise has been established. Note that the
activation in each subcortical unit is essentially unchanged from
earlier in training. However, now activation in the premotor unit is
great enough to trigger a response before the striatal activation has
even finished increasing. This is because Hebbian learning has
progressed enough for visual cortical activation to be sufficient to
drive the correct premotor unit high enough above the incorrect
unit to initiate a response. Now the model is both accurate and fast.

Empirical Tests of SPEED

SPEED predicts that during early information-integration learn-
ing, the COVIS procedural and explicit systems will both be
active. Thus, during early learning, SPEED predicts that neuroim-
aging studies should report activation in a great many brain areas,
including visual cortex, much of the striatum (e.g., head, body, and
tail of the caudate), globus pallidus, several thalamic nuclei (e.g.,
medial dorsal, ventral anterior, ventral lateral), premotor and motor
cortices, PFC, anterior cingulate, and perhaps the hippocampus
and other medial temporal lobe structures (e.g., Ashby & Valentin,
2005). As automaticity develops, however, activation in many of
these regions is predicted to decrease substantially, with the ex-
ception of visual, premotor, and motor cortices (although activa-
tion in these regions could narrow).

We know of no studies that tested these predictions in an
information-integration category-learning task (although the early
learning predictions were generally supported by Seger & Cin-
cotta, 2002, and by Nomura et al., 2007). However, several neu-
roimaging studies have examined changes in neural activations
during the course of more traditional procedural learning tasks, in
which participants were required to execute a fixed sequence of
finger movements. To guarantee automaticity, participants in these
studies either completed weeks of daily practice (Karni et al.,
1995; Lehéricy et al., 2005) or practiced until they showed no
interference from a simultaneous dual task (Poldrack et al., 2005;
Wu, Kansaku, & Hallett, 2004). In general, the predictions of
SPEED were supported in these studies. For example, after auto-
maticity was achieved, decreased activation (relative to initial
learning) was reported in cingulate, premotor, parietal, and pre-
frontal cortices, as well as in the caudate nucleus (Lehéricy et al.,
2005; Poldrack et al., 2005; Wu et al., 2004). However, the
reduced caudate activation reported by Lehéricy et al. (2005) was

only in the associative/premotor regions of the caudate. These
researchers reported increased activations in the sensorimotor re-
gions of the putamen and globus pallidus. Pyramidal cells leaving
motor cortex send collaterals to striatal neurons on the indirect
pathway (Lei, Jiao, Del Mar, & Reiner, 2004), so SPEED predicts
that these latter increases may reflect activity that occurred after
response selection was complete. Also, in contrast to each of these
studies, which reported no cortical regions that increased activity
with practice, Karni et al. (1995) reported an increase in motor
cortex activation in a study in which a high-field strength magnet
was used and focused only on motor cortex.

Thus, the few relevant neuroimaging studies are generally con-
sistent with the predictions of SPEED, but they are hardly conclu-
sive. More rigorous tests can be achieved by examining the quan-
titative predictions of the model. This is the goal of the next four
sections.

Application 1: Tactile Categorization

Romo, Merchant, and their colleagues reported a series of
single-unit recording studies in which monkeys learned vibrotac-
tile categories (Merchant, Zainos, Hernadez, Salinas, & Romo,
1997; Romo, Merchant, Ruiz, Crespo, & Zainos, 1995; Romo,
Merchant, Zainos, & Hernadez, 1997). In these experiments, a rod
vibrated against the monkey’s finger at one of 10 different speeds.
The monkeys were trained to push one button if one of the five
low-speed vibrations occurred and to press a different button if
they received one of the five high-speed vibrations. After extended
feedback training, the monkeys reliably learned these categories.

Following training, the monkeys completed an additional ses-
sion during which single-unit recordings were collected from the
putamen and the premotor cortex. The putamen is a major structure
within the striatum that receives direct projections from somato-
sensory cortex (e.g., Heimer, 1995). Thus, according to COVIS,
the putamen would play the same role for tactile category learning
that the caudate plays for visual category learning.

Within the putamen, the responses of 695 cells were character-
ized in detail. Of these, 196 responded to the onset of the vibrating
rod, regardless of category membership, 258 responded to the
monkey’s arm movement, regardless of response, and 165 re-
sponded to the category membership of the stimulus. In the pre-
motor cortex, 191 neurons were studied. Of these, 104 responded
to category membership. Figure 5 shows recordings from two
category membership neurons from the putamen during categori-
zation of each of the 10 stimuli and response histograms that
summarize the responses of the 104 categorization cells that were
studied in the premotor cortex. Note that the putamen cell corre-
sponding to the upper left panel of Figure 5 fires to every exemplar
in the low-speed category but not to any exemplars in the high-
speed category. The cell corresponding to the upper right panel
shows the opposite firing pattern. Furthermore, these cells did not
respond when the same stimuli were passively presented to the
monkeys (i.e., when no categorization response was required), or
when the monkeys made the same response to visual stimuli
(Merchant et al., 1997). This is strong evidence that the categorical
responses shown in Figure 5 developed as a result of category
learning. The bottom half of Figure 5 shows that similar category-
specific cells appear in premotor cortex. This is perhaps less
surprising because, presumably, such cells must exist in some
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Figure 5. Single-cell responses from left putamen (Merchant et al., 1997;
From “Functional Properties of Primate Putamen Neurons During the
Categorization of Tactile Stimuli,” by H. Merchant, A. Zainos, A. Hernan-
dez, E. Salinas, and R. Romo, 1997, Journal of Neurophysiology, 77, p.
1143. Copyright 1997 by the American Physiological Society. Reprinted
with permission.) and population responses from premotor cortex (Romo et
al., 1997; From “Categorical Perception of Somesthetic Stimuli: Psycho-
physical Measurements Correlated With Neuronal Events in Primate Me-
dial Premotor Cortex,” by R. Romo, H. Merchant, A. Zainos, and A.
Hernandez, 1997, Cerebral Cortex, 7, p. 320. Copyright 1997, by the
Oxford University Press. Reprinted with permission.) to each of 10 stimuli
in a tactile category-learning experiment. Note that cells in both regions
develop category-specific responses.

motor area, given that the monkeys made reliable motor responses
to the two categories. However, other results suggest that the
similarity between the striatal and premotor responses that are
shown in Figure 5 are causal rather than correlational (Brasted &
Wise, 2004).

These data, together with the animal lesion results described
earlier, support the fundamental assumption of COVIS that the
striatum is a key site of learning in perceptual categorization. The
lesion results support the hypothesis that the striatum is both

necessary and sufficient for discrimination learning of the type
required during information-integration categorization (e.g., Eacott
& Gaffan, 1991; Gaffan & Eacott, 1995; Gaffan & Harrison, 1987,
McDonald & White, 1993, 1994; Packard et al., 1989; Packard &
McGaugh, 1992). The data from Romo, Merchant and their col-
leagues (Merchant et al., 1997; Roma et al., 1995, 1997) suggest
that medium spiny cells in the striatum can become associated with
a categorization response, presumably via a process of reward-
mediated learning.

To simulate the performance of SPEED in this experiment, we
constructed a version of the model like the one illustrated in
Figure 3, except with a one-dimensional array of sensory cortical
cells (rather than two-dimensional). Specifically, each stimulus
triggered maximum activation in 1 of 100 somatosensory cells and
triggered less activation in nearby cells. Because there were two
contrasting categories, there were two units in every other brain
region. Both striatal (i.e., putamen) units had 100 spines—one for
each cell in sensory cortex. Thus, each sensory cortical cell pro-
jected to its own spine on both striatal units. The activations of all
units were determined by the equations given above. A response
was initiated when the integrated difference between the two
premotor units first exceeded threshold. The cortical-cortical and
cortical-striatal synaptic strengths were adjusted between trials
according to the two- and three-factor learning equations given
above. Details of this and all other simulations described in this
article are given in the Appendix (including how parameters were
estimated and spikes were generated).

Figure 6 shows the proportion of “low” responses (after train-
ing) given by the monkeys and by SPEED for each of the 10
vibration speeds. The solid vertical line shows the category bound.
Note that the monkeys and the model both reliably learned the
categories. Figure 7 shows simulated single-unit recordings from
the striatal and premotor units of SPEED on trials when each of the

-+ Monkeys
-~ SPEED
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Proportion of Low Responses

\
\

12 14 16 18 20 22 24 26 28 30
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Figure 6. Proportion of “low” responses given to each of 10 stimuli in a
tactile category-learning experiment (Merchant et al., 1997; From “Func-
tional Properties of Primate Putamen Neurons During the Categorization of
Tactile Stimuli,” by H. Merchant, A. Zainos, A. Hernandez, E. Salinas, and
R. Romo, 1997, Journal of Neurophysiology, 77, p. 1151. Copyright 1997
by the American Physiological Society. Reprinted with permission.) by
monkeys (black line) and by SPEED (Subcortical Pathways Enable Ex-
pertise Development; gray line).
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Figure 7. Single-cell responses from the striatum and premotor cortex of
SPEED (Subcortical Pathways Enable Expertise Development) to each of
10 stimuli in the tactile category-learning experiment of Romo, Merchant,
and their colleagues (Merchant et al., 1997; Romo et al., 1995; Romo,
Merchant, Zainos, & Hernadez, 1997). Compare with the responses from
monkeys shown in Figure 5.

10 vibrational speeds was presented. Not surprisingly, the SPEED
units mimic the firing patterns of the monkeys.

Note that the SPEED units in both the putamen and premotor
cortex exhibit a push-pull pattern of responding, in which high
activity in one unit is associated with a suppression below baseline
in the opposite unit. This phenomenon, which is due to lateral
inhibition, can be seen in the Figure 5 putamen recordings of
Merchant et al. (1997), but not in the Figure 5 premotor recordings.
However, it is important to note that whereas the SPEED premotor
simulations in Figure 7 are from a single unit, the Romo et al.
(1997) premotor data shown in Figure 5 are collapsed across 104
neurons, which could obscure push-pull behavior in individual
cells. This seems plausible because push-pull behavior has been
reported in a cortical area closely associated with premotor cortex
(i.e., lateral intraparietal cortex; Shadlen & Newsome, 2001).

Recall that the category-specific neurons in the putamen that are
illustrated in Figure 5 did not respond when the same stimuli were
passively presented to the monkeys (Merchant et al., 1997). The
present version of SPEED, however, would not discriminate be-
tween passive and active experimental conditions, so its striatal

units would respond the same in either condition. One possibility
for correcting this shortcoming might be to model the cholinergic
interneurons in the striatum known as the tonically active neurons
(TANs). The TANs, which have a high spontaneous firing rate
(hence their name), tonically inhibit the striatal medium spiny cells
(Akins, Surmeier, & Kitai, 1990). Motivationally salient cues in
the environment induce a pause in the firing of the TANSs, thereby
disinhibiting the medium spiny cells (Kimura, Rajkowski, &
Evarts, 1984; Ravel, Legallet, & Apicella, 2003). So one possibil-
ity is that TANs maintain their high firing rate during passive
viewing conditions, thereby preventing the medium spiny cells
from firing in response to well-learned stimuli.

The TANSs could also play an important role in recovery from
extinction. In the present version of SPEED, removing the rewards
shortly after a behavior has been learned would cause a reduction
in the strength of the relevant cortical-striatal synapses (and there-
fore extinction). However, if the synaptic strengths became too
small, then reacquisition of the behavior could be difficult once the
rewards were reinstated. Striatal TANs receive a prominent (glu-
tamatergic) input from cortex and thalamus, and these synapses
display considerable synaptic plasticity (e.g., Suzuki, Miura, Nish-
imura, & Aosaki, 2001), which modulates the firing rate of TANs
in response to changing reward conditions in the environment
(e.g., Bar-Gad, Morris, & Bergman (2003). One intriguing possi-
bility, therefore, is that during extinction, the TANs learn that the
stimulus is no longer associated with reward before the synapses
between cortex and the medium spiny cells have completely de-
cayed. Once the TANs no longer pause during stimulus presenta-
tion, their high-spontaneous firing rate would prevent the medium
spiny cells from responding, thereby hastening extinction. During
reacquisition, the TANs might quickly learn that the stimulus was
salient once again, which would cause them to pause during
stimulus presentation, and allow the medium spiny cells to select
a response. One particularly attractive feature of this model is that
it could account for the well-documented phenomenon that reac-
quisition of a behavior following extinction is often faster than the
initial acquisition.

The simulations described in this section provide support for the
early learning component of SPEED (i.e., the procedural learning
system of COVIS) as a model of category learning in monkeys—at
both the single-unit and behavioral levels. The data from Romo,
Merchant and their colleagues (Merchant et al., 1997; Romo et al.,
1995, 1997), however, do not provide a test of the critical late-
stage learning component of SPEED. This is because recordings
were made at only a single time point in the learning sequence—
shortly after the monkeys’ categorization accuracy first reached
asymptote. Testing the expertise component of SPEED requires
data from tasks in which the participants were significantly over-
trained. The next three empirical applications include this critical
overtraining feature.

Application 2: Striatal Dropout With Extended Practice

Carelli, Wolske, and West (1997) trained rats to lever press to a
tone. The rats completed 70 trials per day on each of 18 days. They
learned to lever press reliably to the tone within just a few sessions,
and their mean reaction time (RT) gradually improved over the
course of training. Throughout the extended training period,
Carelli et al. (1997) recorded from single units in the striatum.
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Figure 8. Figure 8a shows single-cell responses from the striatum of a rat in the instrumental learning task of
Carelli, Wolske, and West (1997; From “Loss of Lever Press-Related Firing of Rat Striatal Forelimb Neurons
After Repeated Sessions in a Lever Pressing Task,” by R. M. Carelli, M. Wolske, and M. O. West, 1997, Journal
of Neuroscience, 17, p. 1808. Copyright 1997 by the Society for Neuroscience. Reprinted with permission.).
Figure 8b shows striatal responses from SPEED (Subcortical Pathways Enable Expertise Development) during

Sessions 4, 5, 6, 9, and 12.

Spike histograms from one rat are shown in Figure 8a (ignore
Figure 8b for now). Consistent with the data of Merchant et al.
(1997), during Session 4, these striatal units fire a burst just before
the rat lever presses. However, unlike Merchant et al. (1997),
Carelli et al. (1997) continued recording for many days after the
behavior was learned. Note that during Sessions 5 and 6, the same
striatal units still fire bursts, but now these bursts come after the
response has been made, and therefore they can play no role in
response selection. In later sessions, presumably after automaticity
is well established, the striatum ceases responding altogether; that
is, neither the tone nor the response elicit any activity from the
same striatal units that apparently controlled the response earlier in
training.

The Figure 8 data, together with the other behavioral neuro-
science data reviewed earlier, strongly suggest that novice and
expert instrumental behaviors are controlled by different brain
systems. In particular, the Carelli et al. (1997) results conclusively
falsify any model that assigns a permanent role to the striatum in
instrumental responding. For example, COVIS, by itself, could not
account for these data.

The Carelli et al. (1997) experiment used only a single auditory
cue, so in our simulations, SPEED was given only one sensory
cortical unit, which was either active or not, depending on whether

the stimulus was present. Similarly, because only one response
was possible, SPEED was given only one unit in all other brain
regions (striatum, internal segment of the globus pallidus, thala-
mus, premotor cortex). Initial responses were triggered by noise,’
which sometimes happened in the presence of the stimulus. In this
case, the dopamine levels were adjusted on the basis of the
expectation of reward (see Equations 9 and 10), and the strength of
the cortical-cortical and cortical-striatal synapses were adjusted
according to the two- and three-factor learning equations (see
Equations 7 and 8).

Like the rats, SPEED improved its accuracy and RT during each
of the first four experimental sessions. Figure 8b shows the striatal
responses of SPEED during Sessions 4, 5, 6, 9, and 12. As with the
monkeys, note that the SPEED striatal unit fires bursts just before
the lever press during Session 4. During Sessions 5 and 6, how-
ever, the striatal response begins occurring after the lever press.
This is the time when the behavior is first fully controlled by the

7 This is obviously a poor model of the behavior of the rat in the absence
of a stimulus. A more realistic model, which is beyond the scope of this
article, would have to account for a variety of complex states, such as
motivation, arousal, and the drive to explore.
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cortical-cortical projections. Even later in training, the SPEED
striatal response disappears. After so much training, the reward no
longer elicits dopamine release (because it is now expected), and
without excess dopamine, the strength of the cortical-striatal syn-
apses gradually decays back to baseline.®

The failure of an expected reward to elicit dopamine cell firing
is less likely to reduce the strength of the cortical-cortical synapses
in premotor cortex. This is because any event that causes VTA
dopamine cells to fire will likely lead to increased dopamine levels
in PFC for many minutes, and, therefore, during that time promote
LTP at cortical-cortical synapses, even when the reward is ex-
pected. For example, cues that predict a rewarded session is about
to begin might serve this purpose. In contrast, although such cues
would also likely increase striatal dopamine levels, reuptake mech-
anisms would clear this dopamine from the cortical-striatal syn-
apses before stimulus presentation.

Application 3: The Role of Dopamine in Early Versus
Late Training

Choi, Balsam, and Horvitz (2005) reported the results of an
experiment in which a task similar to the lever-pressing task of
Carelli et al. (1997) was used. Hungry rats freely explored a
chamber. At random times (with at least 30 s between trials), a
tone sounded when a food pellet was dropped into a compartment
attached to the chamber. Upon hearing this tone, every rat was
trained to insert its head into the compartment to retrieve the food.
Each rat completed 28 trials per day for a total of 17 days. Every
rat was given one of four different drug injections on one of three
different training days (so the design was 4 X 3). The drug was
either a saline control or one of three different doses of a selective
dopamine D1 antagonist (SCH 23390). Injections were adminis-
tered (intraperitoneally) on Training Day 3, 7, or 17.

The relevant results are shown in Figure 9. The top panel shows
the effects of the drug on total locomotor activity. Note that, as
expected, the DI antagonist reduced motor activity in a dose-
dependent fashion and that the amount of this reduction did not
depend on the injection day. The middle panel shows the effect of
the drug on the instrumental response. On Day 3, the D1 antagonist
significantly interfered with the expression of the learned behavior,
and in a dose-dependent manner. For example, the rats given the
largest dose failed to retrieve (i.e., in 10 s) approximately 40% of
the rewards even though the control rats with the same amount of
training retrieved virtually all of the available rewards. In contrast,
on Days 7 and 17, the D1 antagonist had no effect on the perfor-
mance of the learned behavior. Even the rats subjected to the
highest dose managed to retrieve almost all rewards, despite their
impaired motor abilities. Thus, dopamine D1 antagonists disrupt
the expression of learned instrumental behaviors early in training,
but not after the rats have had extensive practice at the task. As
with the Carelli et al. (1997) data, these results are extremely
problematic for any model that assumes instrumental learning is
controlled by a single basal ganglia-dependent system.

When simulating the performance of SPEED in this task, we
made the same architectural assumptions as in the Carelli et al.
(1997) simulations (and used all the same parameter estimates).
We modeled the dopamine antagonist by (linearly) reducing the
dynamic range of the dopamine levels about baseline (see the
Appendix for details). Thus, the 12 data points of Choi et al. (2005)
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Figure 9. Locomotor count on Days 3, 7, and 17 for the rats in each of the
four drug groups of the instrumental learning task of Choi, Balsam, and
Horvitz (2005; top and middle panels, From “Extended Habit Training Re-
duces Dopamine Mediation of Appetitive Response Expression,” by W. Y.
Choi, P. D. Balsam, and J. C. Horvitz, 2005, Journal of Neuroscience, 25, p.
6730. Copyright 2005 by the Society for Neuroscience. Reprinted with per-
mission.). The bottom two panels show the proportion of rewards missed by
the animals (middle panel) and by SPEED (Subcortical Pathways Enable
Expertise Development; bottom panel) on these same days and under these
same conditions.

81t is well-known that when a reward becomes predictable, its presen-
tation no longer elicits dopamine release. Instead, the dopamine release
moves back to the cue that predicts the reward (e.g., Schultz, 2002). The
dopamine release to the cue typically does not diminish, perhaps because
the appearance of the cue is generally unpredictable. In the Carelli et al.
(1997) experiment, however, the auditory tone was presented to the rat
only when it stood on a piece of blue tape affixed to the floor of the cage.
Because of this unusual design feature, the tone itself became predictable.
So one possibility (suggested by J. Horvitz, personal communication,
November 14, 2005) is that the tone eventually failed to elicit dopamine
release, and it is only for this reason that the striatal response disappeared.
SPEED predicts that in the absence of dopamine release, the striatal response
will eventually disappear. Our simple model of dopamine release (see Equa-
tions 9 and 10) only models the amount of dopamine released to the feedback
signal (i.e., the reward). For the present applications, this model appears
sufficient. In tasks in which dopamine release to the cue predicting reward
plays a prominent role, however, we would need to substitute a more sophis-
ticated model of dopamine release for Equations 9 and 10.
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were fit with three free parameters—the effective reduction in free
dopamine that results from injection of the three doses of D1
antagonist.

Fits of SPEED to these data are shown in the bottom panel of
Figure 9. Note that the fit is virtually perfect. In fact, after expertise
has been established (i.e., after the behavior is controlled by the
cortical-cortical projections), the model predicts no effects of
dopamine antagonists regardless of the parameter values.

Application 4: Human Category Learning

As humans gain practice in virtually any skill, they naturally
become faster and more accurate. In many laboratory studies of
expertise or automaticity, asymptotic accuracy is perfect, and so
the primary focus is on RT. The most widely replicated and best
known empirical result in this area is that mean RT decreases as a
power function of the amount of practice. Among many other
examples, a power-function speed-up has been reported for cigar
rolling (Crossman, 1959), proving geometry theorems (Neves &
Anderson, 1981), and categorization of color patches (Nosofsky &
Palmeri, 1997). In fact, by the early 1980s, the power-function
speed-up was so well accepted that Newell and Rosenbloom
(1981) proposed it as a scientific law.

According to the original formulation of the power law of
speed-up, mean RT after N repetitions of a task should equal

RTy = Thin + (N + no)iﬁ: (11)

where 7, is the irreducible minimum RT, o is a constant, 3 is
interpreted as the learning rate (usually between 0 and 1), and n,
is interpreted as the number of trials of learning that occurred
before the task began. Because SPEED has no prior learning, in
our applications we consider a reduced version of the power law in
which n, = 0. Not surprisingly, the power law of speed-up played
a pivotal role in the development of a number of cognitive models
of expertise (e.g., Anderson, 1983, 1993; Cohen, Dunbar, & Mc-
Clelland, 1990; Logan, 1988; MacKay, 1982; Nosofsky & Palm-
eri, 1997; Rickard, 1997). Despite its ubiquity, however, it should
be noted that there have been recent challenges to the universality
of the law (Heathcote, Brown, & Mewhort, 2000; Rickard, 1997).

Nosofsky and Palmeri (1997) reported the results of a category-
learning experiment that used information-integration categories in
which the mean RTs for each individual participant were well
described by the power law. In this experiment, 12 Munsell color
patches that varied in saturation and brightness (but not hue) were
equally divided into two information-integration categories (e.g.,
the categories were nonlinearly separable). Each participant com-
pleted 1,800 categorization trials (150 repetitions of each stimu-
lus). By the end of training, all participants were responding with
near perfect accuracy, so the dependent variable of primary interest
was mean RT, which was computed for each consecutive 60-trial
block. These mean RT profiles were well fit by the power law (i.e.,
the power law accounted for 88.3%, 74%, and 94% of the variance
in the mean RTs of each participant, respectively).

We modeled these data with the same version of SPEED that
was used to fit the data of Romo, Merchant, and their colleagues
(Merchant et al., 1997; Roma et al., 1995, 1997) except in this
application we included 10,000 sensory cortical units (see the
Appendix for details). We let the model learn the categories 3,000

different times, using different initial random cortical-striatal syn-
aptic strengths and different initial seeds for the noise generators.
Figure 10 summarizes the performance of the model across these
3,000 simulations. Figure 10a shows the proportion of correct
responses on each trial. Note that SPEED successfully learned
the two categories, with accuracy becoming perfect after about
200 trials. Because the categories used by Nosofsky and Palm-
eri (1997) were nonlinearly separable, this application demon-
strates that SPEED can learn nonlinearly separable categories.

Figure 10b shows the mean RTs (averaged across stimuli)
predicted by SPEED on each trial of learning (ignore the bottom
panel for now). We fit power and exponential functions to these
mean RTs using the same procedures as in Nosofsky and Palmeri
(1997, i.e., by grouping the mean RT data into 30 blocks). The
power law gave an excellent account of the RT speed-up exhibited
by the model (i.e., accounting for 99.51% of the variance). In
contrast, an exponential function’ gave a poorer account (i.e.,
accounting for 94.7% of the variance).

Figure 11 shows the RT density functions predicted by the
model on a variety of different trials during the learning process.
For example, the density function on Trial 77 was estimated by
taking the RT on Trial 77 from each of the 3,000 replications and
applying a Parzen (1962) kernel density estimator with a Gaussian
kernel of width 10 ms. The RT density functions shown in Fig-
ure 11 display a number of properties that are commonly seen in
empirical RT distributions. First, each of the distributions in Fig-
ure 11 is unimodal and skewed right, as are virtually all empirical
RT distributions (e.g., Luce, 1986). Second, SPEED predicts a
substantial decrease in RT variance with practice. Although the
relation between RT variance and practice has not been as exten-
sively studied as the relation between mean RT and practice, there
is nevertheless much data supporting this prediction of SPEED
(e.g., Logan, 1988; Rickard, 1997).

The unimodal nature of these distributions may, at first glance,
seem counterintuitive. If the observable RT is sometimes deter-
mined by a slow subcortical path and sometimes by a fast cortical
path, then one might expect the model to predict a bimodal RT
distribution. In fact, SPEED predicts that, before automaticity has
developed, both paths contribute to each response. The premotor
unit that controls the response receives excitatory inputs from both
the cortical and subcortical pathways. Initially almost all of this
excitation comes from the subcortical path, and after automaticity
has developed, it almost all comes from the cortical path. In
between, however, both paths contribute. To show this, on each
trial we can measure the amount of excitatory input to the critical
premotor unit coming from the cortical and subcortical paths. The
proportion of this excitation contributed by the subcortical path is
illustrated in Figure 10c. The trials for which the RT densities in
Figure 11 were estimated correspond to points on this curve that
are equally spaced on the ordinate. Note that the Figure 10c
proportion starts at 1 and gradually decreases to 0 after many trials.
Thus, as expected, at the beginning of training, the subcortical path
completely controls responding. Even so, the cortical path quickly
begins to contribute, even before it can generate enough activation
to cause a response on its own. The more the cortical path con-

° Both RT models had three free parameters. The best fitting version of
the power law was RT = 37 + 1339N %,
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Figure 10. (a) Proportion correct and (b) mean response time on each trial of 3,000 SPEED (Subcortical

Pathways Enable Expertise Development) simulations of the Nosofsky and Palmeri (1997) color category-
learning experiment. Figure 10c shows the proportion of the total premotor activation (i.e., in the unit that
controlled the response) that was generated by the subcortical path of SPEED in each simulation.

tributes, the faster the RT, so Figure 10c shows why SPEED
predicts a continuous improvement in RT and why the RT distri-
butions are unimodal. Figure 10 also shows that RT continues to
decrease even after control has largely been passed to the cortical
path. This is because the strength of the cortical-cortical synapses
continues to increase (i.e., according to Equation 9) throughout
training.

One thing Figure 10 does not show is that if the cortical path
were lesioned, then SPEED would still show some RT improve-
ment. This is because as the subcortical path learns, the critical
cortical-striatal synaptic strengths increase, which allows sensory
cortex to elicit a striatal response more quickly, which lowers RT.
Thus, the RT improvement exhibited by SPEED is not due simply
to passing control from a pathway with four synapses to a pathway
with one synapse. Both paths themselves become faster because
they both include a synapse that is gradually strengthened. This
feature, together with the fact that it takes time for either pathway
to generate enough postsynaptic activation in the premotor units to
trigger a response, ensures that RT improvements in SPEED occur
gradually (rather than suddenly) and that the RT distributions are
unimodal.

This application shows that the predictions of SPEED are con-
sistent with the power-law speed-up in RT, which is the most
widely known result of the human expertise literature. In addition,
Figure 11 shows that SPEED makes roughly the correct predic-

tions about the effects of practice on RT variance and on the shape
of the RT density function.

Relations to Other Models

Models of Expertise

Although we know of no other neurobiologically detailed mod-
els of categorization automaticity or expertise, there are a number
of cognitive-based models. In this section, we briefly consider the
relationship between SPEED and the more popular of these mod-
els.

Perhaps the most widely known cognitive model of expertise is
Logan’s (1988) instance theory of automaticity, which assumes
that when a skilled behavior must be emitted, there is a race
between accessing the procedures for computing the behavior and
recalling a previous instance in which the behavior was success-
fully executed. With more and more practice, there are more and
more stored instances of the behavior, so recall becomes faster and
faster. SPEED is similar to the instance theory in that both models
postulate two processes. In addition, in both cases, the process that
dominates early performance is slow, whereas the process that
dominates late (expert) performance speeds up greatly with prac-
tice. Rickard (1997) proposed an alternative version of the instance
model, called the component power laws (CMPL) theory, which
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Figure 11.

Predicted response time density functions estimated from 3,000 SPEED (Subcortical Pathways

Enable Expertise Development) simulations of the Nosofsky and Palmeri (1997) color category-learning

experiment.

assumes that on each trial, either the procedure or instance is
executed, but not both. Thus, unlike Logan’s (1988) model and
SPEED, the CMPL model assumes no parallel race on each trial.
Thus, SPEED is more similar to Logan’s (1988) instance theory
than to Rickard’s (1997) CMPL model.

To our knowledge, the only model of categorization expertise
that has been proposed is Nosofsky and Palmeri’s (1997)
exemplar-based random walk (EBRW) model. This model as-
sumes that when a categorization stimulus is presented, the mem-
ory representations of previously seen exemplars from the two
contrasting categories (call them A and B) are accessed, with the
provision that exemplars that are more similar to the stimulus tend
to be accessed more quickly. Response A is given as soon as the
difference between the number of Category A and B exemplars
accessed first exceeds a preset criterion. As expertise develops,
there are more and more stored exemplars, so the criterion is
reached more quickly. Thus, whereas SPEED proposes that the
transition from novice to expert is characterized by a qualitative
shift from one neural circuit to another, the EBRW assumes that
the same process mediates all categorization performance, regard-
less of level of training.

The instance, CMPL, and EBRW models are purely cognitive
models that make no neurobiological assumptions. Because they
are expressed in such a different language from SPEED, detailed
comparisons are difficult. At the minimum, some neural-based
definition of instance and exemplar memory are needed. An ob-

vious possibility is that the neural representations of both an
instance and an exemplar memory are memory traces (e.g., of an
episode) of the type consolidated by the hippocampus and other
medial temporal lobe structures. For example, although there pres-
ently is no detailed neurobiological interpretation of exemplar
theory, initial attempts to ground exemplar models of categoriza-
tion in neurobiology have all assigned a key role to the hippocam-
pus, at least during early learning (e.g., Pickering, 1997; Sakamoto
& Love, 2004). According to this hypothesis, SPEED sharply
disagrees with instance and exemplar-based models because of its
focus on the basal ganglia as a key site of early learning in
information-integration tasks, rather than the hippocampus. As
mentioned above, this critical assumption of SPEED is supported
by a variety of different experimental results (for a review, see,
e.g., Ashby & Ennis, 2006). For example, there are numerous
reports that basal ganglia disease patients are impaired in
information-integration category learning (e.g., Filoteo et al.,
2001a; Filoteo et al., 2005), whereas Filoteo et al. (2001b) reported
that medial temporal lobe amnesiacs learn normally in
information-integration categorization tasks.

It is important to note that we are not arguing that the hippocam-
pus and other medial temporal lobe structures are not critical for
normal category learning, only that they are not critical for learn-
ing in information-integration tasks. With other types of catego-
ries, medial temporal lobe structures might be vital for normal
learning. For example, Ashby and O’Brien (2005) hypothesized
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that the hippocampus may be critical in learning unstructured
categories that contain only a few exemplars (e.g., my siblings; my
personal numbers, such as zip code, phone number, and the like).
Also, it has been hypothesized that the hippocampus is vital for
long-term rule-based category learning or when learning complex
rule-based categories (e.g., Ashby & Valentin, 2005; Nomura et
al., 2007).

SPEED is more similar to exemplar models at the computational
level than at the neurobiological level (e.g., they are both nonpara-
metric classifiers; Ashby & Alfonso-Reese, 1995). Even so, the
subcortical component of SPEED is not a neurobiological imple-
mentation of an exemplar model (Ashby & Waldron, 1999). It
could be viewed, however, as a neurobiological version of other
cognitive-based categorization models, including the striatal pat-
tern classifier (Ashby & Waldron, 1999), Anderson’s (1991) ra-
tional model, or the covering version of Kruschke’s (1992) atten-
tional learning covering map (ALCOVE) model (rather than to the
more widely used exemplar-based version of ALCOVE). In each
of these models, a low-resolution decision grid is associated with
a high-resolution perceptual space, and response selection is based
on what grid points are activated by the stimulus.

Models of Object Recognition

Riesenhuber and Poggio (1999) proposed a neurobiologically
detailed model of object recognition that mimics the firing prop-
erties of cells in inferotemporal cortex when monkeys are catego-
rizing objects as cats or dogs (Freedman et al., 2003). The model
has a hierarchical structure in which cells from earlier visual areas
tuned to simpler features feed forward to cells in higher visual
areas that encode more complex and view-invariant objects. De-
spite the success of this model in mimicking single-cell firing data
from categorization tasks, a number of results suggest that the
Riesenhuber and Poggio (1999) model should not be viewed as a
competitor to SPEED.

First, several studies have reported that following categorization
training, cells in inferotemporal cortex showed enhanced sensitiv-
ity to diagnostic features compared with features that were irrele-
vant to the categorization judgment (Sigala, 2004; Sigala & Logo-
thetis, 2002). Such changes are consistent with the widely held
view that category learning is often associated with changes in the
allocation of perceptual attention (Nosofsky, 1986). Second and
most critical are the studies showing that categorization training
did not make inferotemporal cortex neurons more likely to respond
to other stimuli in the same category, or less likely to respond to
stimuli belonging to the contrasting category (Freedman et al.,
2003; Op de Beeck et al., 2001; Sigala, 2004; Thomas et al., 2001;
Vogels, 1999). Third, Rolls et al. (1977) showed that the firing
properties of cells in inferotemporal cortex did not change when
the motor responses associated with category membership were
switched (i.e., from “approach” to “avoid” and vice versa). For
these reasons, the best evidence seems to suggest that inferotem-
poral cortex does not mediate the learning of new categories. Even
so, this visual association area is crucial to the categorization
process because it appears to encode a high-level representation of
the visual stimulus. Cells in inferotemporal cortex project to the
body and tail of the caudate nucleus, so the Riesenhuber and
Poggio (1999) model could be incorporated into SPEED by using

it to create a much more powerful model of the sensory input to the
caudate and premotor units of SPEED.

Limitations

In its present formulation, SPEED has many limitations that
prevent it from being considered a complete model of categoriza-
tion expertise. First, it is meant only as a model in information-
integration tasks. There is good evidence that other brain areas are
recruited during category learning with different types of category
structures. For example, a variety of evidence suggests that rule-
based category learning depends on PFC (e.g., Kimberg,
D’Esposito, & Farah, 1997; Monchi, Petrides, Petre, Worsley, &
Dagher, 2001; Waldron & Ashby, 2001). In fact, a number of
studies have shown that the application of a wide variety of
abstract rules depends critically on the PFC (Asaad, Rainer, &
Miller, 2000; Hoshi, Shima, & Tanji, 1998; Muhammad, Wallis, &
Miller, 2006; Wallis, Anderson, & Miller, 2001; White & Wise,
1999).

An important generalization of SPEED will be to extend it to
rule-based tasks. An obvious possibility would be to begin with the
COVIS explicit system, which assumes that rule-based perfor-
mance is largely mediated by a network that includes the PFC, the
anterior cingulate, the hippocampus, and the head of the caudate
nucleus (e.g., Ashby & Valentin, 2005). Then, as in SPEED, one
could explore the possibility that the development of expertise
coincides with a gradual transfer of control to cortical-cortical
projections. Some neuroscience data support a model of this type.
For example, Muhammad et al. (2006) recorded from single neu-
rons in the PFC, head of the caudate, and premotor cortex while
monkeys were applying rules. As predicted by COVIS, they found
many cells in the PFC and caudate that fired selectively to a
particular rule. However, after training the monkeys for 1 year,
they also found many premotor cells that were rule selective, and,
even more importantly, these cells responded, on average, about
100 ms before the PFC-rule selective cells. This result suggests a
model in which the COVIS rule-based system trains cortical-
cortical projections in much the same way as in SPEED.

SPEED must also be considered incomplete as a model of
information-integration category learning. For example, we have
greatly oversimplified the neuroanatomy of the basal ganglia,
omitting striatal interneurons, striatal striosomes (i.e., patch com-
partments), as well as the indirect pathway out of the striatum (i.e.,
via the external segment of the globus pallidus and the subthalamic
nucleus). This last omission is potentially serious because there are
recent proposals that the indirect pathway plays a prominent role in
learning what responses not to make when a stimulus is presented
(Frank, 2005; Frank, Seeberger, & O’Reilly, 2004).

One possible consequence of these omissions is that the sub-
cortical component of SPEED might oversimplify the process via
which motor goals become associated with categories. In the
present version of the model, the striatal units are each associated
with a specific motor response goal before the start of category
learning (e.g., press the left-response key). Thus, if the model were
trained on a particular category and the response locations asso-
ciated with each category were switched after training was com-
plete, then the model would have to relearn the category responses
from scratch. Such response switching does significantly interfere
with the expression of information-integration category learning,
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although interestingly it does not interfere with rule-based cate-
gory learning (Ashby et al., 2003). Even so, it is natural to expect
the recovery from response switching in information-integration
tasks to be faster than the initial category learning (Ashby et al.,
2003, did not look at recovery). If so, then it is likely that the
striatal units become associated with specific motor goals at some
point after the cortical-striatal synapse.

Conclusions

SPEED formalizes and tests a hypothesis of Ashby et al. (1998)
that a primary function of the COVIS procedural learning system
is to train faster cortical-cortical projections. In the nearly 10 years
since COVIS was first proposed, a wide variety of evidence has
been reported that supports the basic notion of COVIS that
information-integration category learning is initially mediated
largely within the striatum. Among the most convincing of such
data are the single-unit recordings of Merchant et al. (1997),
shown in the top panel of Figure 5, which show that category-
specific responses develop in the striatum following initial training
in tactile category learning. Figures 6 and 7 show that SPEED
gives an excellent account of these data.

Equally important, there is an accumulating set of convincing
data suggesting that COVIS is inadequate as a model of automatic
categorization judgments. For example, basal ganglia disease pa-
tients, who are impaired in learning new information-integration
categories, do not lose old familiar categories. In addition, al-
though the early training data of Carelli et al. (1997) and Choi et
al. (2005) are compatible with COVIS (i.e., up to the point at
which accuracy asymptotes), the data collected in these studies
after the animals had extensive training strongly contradict CO-
VIS. Nevertheless, SPEED provides excellent accounts of both
data sets, and it is perhaps these fits that provide the strongest
overall evidence supporting SPEED as a general model of auto-
maticity. Our last application showed that SPEED is also compat-
ible with the most widely known behavioral phenomenon associ-
ated with human expertise.

In the present article, we fit SPEED to single-cell recording and
behavioral data, and we modeled pharmacological treatments. De-
spite the diversity of these applications, they only scratch the
surface of the possible empirical tests of SPEED. Formulating the
theory as we did, in a neurobiologically detailed manner, allows
tests of the model in a wide variety of experimental domains. For
example, by adding a model of how neural activation is related to
the fMRI blood oxygen level-dependent (BOLD) signal, SPEED
could be used to generate predicted BOLD signals in each of the brain
regions shown in Figure 3 and to make predictions about how these
BOLD responses are changed by practice (e.g., by using the methods
described by Ashby & Valentin, 2006). The model could also be
generalized in a straightforward manner to make precise predictions
about the categorization abilities of a variety of neuropsychological
patient groups (e.g., PD, Huntington’s disease). This diversity in
possible applications is among the greatest strengths of SPEED and of
the modeling approach that was used in its construction.
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Appendix

Simulation Methods
General Methods

In all applications, sample solutions'® were estimated using Euler’s
method together with the constraint that the solutions were bounded
below and above by 0 and 1, which are the asymptotic bounds of the
true solutions. A dynamic integrate-and-fire method developed by
Ashby and Valentin (2006) was used to model the flow of activation
between brain regions. Briefly, this method integrates the activation in
each region. When this integral exceeds a threshold, a square wave of
activation is sent to the next region and the integral is reset to zero.
One exception to this approach was that the activations from sensory
cortex were assumed to be a constant multiple of the relevant synaptic
strengths as long as the stimulus was present and O otherwise. This
simplification was made to avoid the computation of 10,000 addi-
tional integrals at each time point and is effectively equivalent to
assuming that sensory cortex has a constant rate of firing during the
stimulus presentation.

Parameter Estimation

Our goal in the simulations was to determine whether SPEED is
qualitatively consistent with the results of the various experiments.
With single-cell recording data, it is likely that the responses of
nearby cells differ quantitatively even if they show the same
qualitative pattern of responding. Thus, our goal was not to pro-
vide precise quantitative fits to the various single-cell data. In
addition, although we did not perform formal parameter space
partitioning (Pitt, Kim, Navarro, & Myung, 2006), the qualitative
predictions of SPEED were invariant under small changes to the
parameter values. Specifically, for each parameter, there was a
range of values under which the model would learn. Within this
range, SPEED tended to make consistent qualitative predictions.

For these reasons, we crudely searched the parameter space by
hand.

Our general strategy was to first find parameter estimates that
allowed SPEED to learn the Nosofsky and Palmeri (1997) cate-
gories (Application 4). In most cases, these estimates remained
fixed for the other applications. For example, no new parameters
were estimated in Application 1. However, task differences re-
quired that we adjust some parameter estimates in Applications 2
and 3. In particular, the experiments in Applications 1 and 4 used
many stimuli, two alternative responses, and monkeys and humans
as participants, respectively, whereas the experiments in Applica-
tions 2 and 3 used one stimulus, one response, and rats as partic-
ipants. Because SPEED had only one premotor and striatal unit in
Applications 2 and 3, but two each in Applications 1 and 4, for
example, there was lateral inhibition between the SPEED premotor
and striatal units in Applications 1 and 4 but not in Applications 2
and 3. This difference affected our estimates of the baseline
activity levels in striatal and premotor areas.

The parameter estimates from all applications are listed in Table
Al. Note that Applications 1 and 4 used identical estimates, as did
Applications 2 and 3. Across these two types of tasks, the param-
eters that differed were (a) initial synaptic strengths from sensory
cortex to striatum, (b) learning rates, (c) NMDA receptor thresh-
olds, and (d) striatal and premotor baseline rates. These new values
were estimated during Application 2 (i.e., Carelli et al., 1997) and
used again in Application 3 (Choi et al., 2005). Thus, the only free

10 ecause the differential equations listed in the text are stochastic, their
solutions are stochastic processes. By sample solution, we mean a specific
realization of the solution to a stochastic differential equation.

(Appendix continues)
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Table Al

SPEED Parameter Estimates

Parameter Applications 1 & 4 Applications 2 & 3

a 3 N/A
a, 3.00 X 10712 2.00 X 10713
By 5.00 X 1012 2.00 X 10713
a,, 1.00 X 1078 4.50 x 1071
By 1.00 X 1078 3.00 X 107!
Ve 1.00 X 1078 3.00 x 107"
Py 1.00 X 10°* 3.00 X 1077
Onpipa (striatum) 800 300
Onnipa (premotor cortex) 400 500

base 2 2
Spase 2 0

7 7
Thuse 4 4

base 2 0
Bs .0085 N/A
Ys .004 .004
oy .02 .02
ag .03 .03
Bes .0025 .0025
ar .03 .03
B .0025 .0025
ag .007 .007
Be .0085 N/A
YE .004 .004
Og 0125 .0125
T 180 140

Note. SPEED = subcortical pathways enable expertise development;
N/A = not applicable.

parameters in Application 3 corresponded to the effective reduc-
tion in dopamine that resulted from each of the three doses of the
D1 antagonist. These estimates were 1 (vehicle), 0.95 (low dose),
0.86 (medium dose), and 0.5 (high dose).

Each application included a waiting period and a response
deadline determined by the particular experiment featured in the
application. In addition, there was a half-second period after the
response was made to simulate the time during which feedback
was given and processed. Inhibition was only active during stim-
ulus presentation because the baseline firing rate models the result
of inhibition and excitation from other cells during a neutral
condition. In Applications 1 and 4, initial synaptic weights from
sensory cortex to striatum were assumed to vary uniformly over
the range (0.0002, 0.0002025). In Applications 2 and 3, the initial
synaptic weight for the single synapse between sensory cortex and
striatum was given the single number 0.0005. In all applications,

initial synaptic weights from sensory cortex to premotor cortex
were set to zero.

Sensory Unit Activation

As described in the text, Application 1 included 100 sensory
cortical units, Applications 2 and 3 included one sensory cortical
unit, and Application 4 included 10,000. In Application 1, each
sensory cortical unit (somatosensory cortex) was assumed to have
a preferred vibration speed, and these preferred speeds were
equally spaced across the 100 units and spanned the range of
presented stimuli (i.e., 12-30 mm/s). In Applications 2 and 3, the
preferred stimulus of the single sensory cortical unit (auditory
cortex) was the presented stimulus (i.e., tone). In Application 4, the
10,000 sensory cortical units (visual association cortex) were ar-
ranged in a two-dimensional rectangular grid, with axes corre-
sponding to saturation and brightness. The rows and columns were
equally spaced and covered the ranges of saturation and brightness
used by Nosofsky and Palmeri (1997). The preferred stimulus of
each unit was determined by its row and column. In all applica-
tions, the activation of each sensory cortical unit was determined
by Equation 1. In each application, the stimulus was either feed-
back terminated or assumed to have a representation held in
sensory cortex until feedback was processed.

Dopamine Levels

In all applications, the amount of dopamine released on each
trial was determined by Equations 9 and 10. The probability of a
correct response, P(C), was estimated from SPEED’s performance
over the previous 50 trials. In Application 3, we assumed that the
effect of the dopamine D1 antagonist was to restrict the dynamic
range of the dopamine levels. For instance, without a drug effect,
the dopamine levels varied between a maximal value of 1 and a
minimal value of 0 about a baseline level of 0.2. With a high level
of drug, dopamine levels varied between a maximal value of 0.45
and a minimal value of 0.1, still about a baseline level of 0.2.

Spike Trains

Finally, to produce the spike trains shown in Figure 7, we
applied a standard integrate and fire model (e.g., Koch, 1999), as
there was no advantage in this case to using a more complicated
dynamic integrate and fire model (e.g., Ashby & Valentin, 2006).
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