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From affiliative behaviors to romantic feelings: A role of nanopeptides
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Abstract Love is one of the most desired experiences. The quest
for understanding human bonds, especially love, was tradition-
ally a domain of the humanities. Recent developments in biolog-
ical sciences yield new insights into the mechanisms underlying
the formation and maintenance of human relationships. Animal
models of reproductive behaviors, mother–infant attachment
and pair bonding complemented by human studies reveal neuro-
endocrine foundations of prosocial behaviors and emotions.
Amongst various identified neurotransmitters and modulators,
which control affiliative behaviors, the particular role of nano-
peptides has been indicated. New studies suggest that these
chemicals are not only involved in regulating bonding processes
in animals but also contribute to generating positive social atti-
tudes and feelings in humans.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Considering the long tradition of the humanities, the scien-

tific pursuit of social bonds and the accompanying emotions

has a relatively short record. For millennia, human cognitive

and affective states were viewed independently of bodily func-

tions. The rise of empirical science dramatically changed this

situation [1]. In the second half of the 19th century, William

James, one of the founders of the modern psychology, pointed

at the inseparable integrity of emotions and their accompany-

ing bodily manifestations. A few decades later, in the first half

of the following century, the accumulation of data coming

from brain studies lead James Papez to the formulation of

the first brain-based integrated model of emotions. Although

Papez theory did not get sufficient empirical support, the fact

that it demonstrated a possibility that human feelings might

be conceptualized in terms of well-defined cerebral circuits,

stimulated a lot of research. For that reason the Papez model
Abbreviations: IT, isotocin; MT, mesotocin; OT, oxytocin; OTR,
oxytocin receptor; AVP, vasopressin; V1aR, vasopressin receptor 1a;
AVT, vasotocin
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is considered to be a turning point in the history of affective

neuroscience [2,3].

Amongst the best understood brain networks, which under-

lie emotions, are the circuits controlling fear and anxiety [2].

This is most spectacularly reflected through the efficacy and

a wide-spread use of anxiolytic drugs. In contrast to other

emotions, fear is easier to study in the brain. Fear is a ubiqui-

tous experience in the animal kingdom and its underlying neu-

ral networks have been well-preserved in the course of

evolution. Recently, however, more and more interest has been

directed towards studying positive emotions and feelings,

including those that accompany the human experience of

romantic love [4–6].

However, love is not a scientific concept. Apparently, love is

not even a distinct phenomenon. Therefore, it is impossible to

empirically investigate it using a single methodology. Yet, the

notion of love, as it is conveyed by everyday language, encom-

passes various behaviors, attitudes and affective states, which

in turn may be effectively studied. Animal models of reproduc-

tive behaviors [7,8], parent–infant attachment [9,10] and pair

bonding [11,12] complemented more recently by human phys-

iological [6] and brain imaging studies [4,5] uncover neural and

endocrine mechanisms that underlie these complex biological

phenomena, which are associated with the human experience

of love.
2. The synchrony

The survival of a species depends on its reproductive success.

Reproduction, however, is a costly venture. It consumes vast

amounts of energetic resources, which would be otherwise uti-

lized on processes subserving the survival of an individual.

Therefore, in the course of evolution reproductive mechanisms

have been optimized in response to environmental demands

[3,8]. Depending on the climatic conditions, animals exhibit

various reproductive patterns. In regions with moderate cli-

mate and prolonged, regular seasonal cycles, the gonadal

and thus reproductive activity harmonizes with these cycles

(e.g. the gonads of seasonal breeders grow in early spring

and regress in autumn). The fact that the preoptic area of

the hypothalamus in these animals is an evolutionarily

preserved site, which controls thermoregulation, as well as

procreative functions, depicts the close relations between

reproduction and seasonal changes, and indicates the role of

temperature in initiating sexual activities [7]. By contrast, in

more arduous environments, characterized by complete unpre-
ublished by Elsevier B.V. All rights reserved.
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dictability of breeding conditions, the gonads are constantly

maintained at the preparedness level so breeding can immedi-

ately occur, whenever favorable circumstances arise [8].

However, successful sexual reproduction requires more than

the coordination of physiological processes with the environ-

ment. Animals need to seek for, select and court their potential

mate. Typically, effective mating happens, when one potential

mate is receptive to the advances of the other [8]. Furthermore,

in order for the fertilization to occur, insemination and ovula-

tion have to take place in a synchronous manner. The same

hormonal changes, such as alterations in estrogen and proges-

terone levels, which regulate the maturation of an egg, are also

responsible for the enhancement of female sexual receptivity

[3]. Evidence from avian studies demonstrates that seasonal

variations in testosterone concentrations modulate the expan-

sion of brain circuits that control some forms of mating behav-

iors in males [3]. As a result, the relevant neural circuitry,

similarly to male gonads, expands in size in the springtime

and recesses in the fall. In most species, sexual arousal and

readiness to copulate is harmonized with peak fertility. Never-

theless, the reproductive activity of humans and few other ver-

tebrate species does not strictly follow this pattern allowing

intercourse at any time point of the cycle [3]. Consequently,

courtship and mating behaviors may be expressed to some ex-

tent independently of their primary reproductive goals.

Mammalian and avian newborns are incapable of indepen-

dent functioning. Therefore, it is essential that these infants re-

ceive nurturing from the very beginning. This is mainly

accomplished by the formation of mother–infant attachment.

Labor and nurturing directly result from the proceeding

reproductive events. The mechanisms, such as gonadotropic

and gonadal hormones, which are involved in mating and

pregnancy, are also responsible for initiating the maternal care

of infants [3]. In many species, however, nurturance requires

the cooperation of both parents. For this reason, some animals

developed tools supporting the maintenance of sustained

bonds between the two parents [11]. In its uttermost appear-

ance pair bonding may reach beyond its original procreative

goal and take a form of a life-long monogamous relationship

[11]. Reproductive behaviors, mother–infant attachment and

adult–adult bonding require the harmonization of numerous
Fig. 1. Chemical structures of oxytocin and vasopressin. Oxytocin and vaso
amino acids (marked in italic).
neural and endocrine factors. Increasing amounts of data de-

pict the critical role of the two peptides oxytocin (OT) and

arginine vasopressin or vasopressin (AVP) in modulating these

three dimensions of mammalian social functioning.
3. Nanopeptides

Oxytocin and vasopressin are nanopeptides (nine amino-

acid peptides) (Fig. 1). In general, nanopeptides are key

homeostatic molecules responsible for the control of osmotic

pressure in terrestrial vertebrates. Both peptides are synthe-

sized in the paraventricular and supraoptic nuclei of the hypo-

thalamus, and subsequently transported through the

projections ending in the posterior pituitary (neurohypophy-

sis). Neurohypophysis is the storage site, from which OT and

AVP are released to the circulation. In addition, vasopressin

is also produced in the suprachiasmatic nucleus of the hypo-

thalamus and in the bed nucleus of stria terminalis and the

medial amygdala [13]. These sites send exclusive intra-cerebral

projections. Oxytocin is also delivered to the specific sites in

the central nervous system. Distinct projections from the para-

ventricular nuclei transport OT to the hypothalamus, amyg-

dala, hippocampus, nucleus accumbens, as well as the brain

stem and spinal cord structures [12]. Major peripheral roles

of OT involve supporting uterine contractions throughout la-

bor and ejection of milk during lactation [12,14]. In contrast,

vasopressin exerts powerful anti-diuretic action by controlling

water reabsorption in kidneys.

The nanopeptide family involves both vertebrate and inver-

tebrate peptides, which suggests that the ancestral gene encod-

ing the precursor peptide was already present around 700

million years ago, before the two groups separated [15]. The

descendant peptides developed from their predecessor by a

gene duplication mechanism [15,16]. All vertebrates, except

primitive cyclostomes (jawless fish), possess both OT-like and

AVP-like molecules, which represent two ancestral lines [16].

The most likely precursor of oxytocin is isotocin (IT), which

may be found in bony fish [15]. Mesotocin (MT), which is pres-

ent in amphibians, reptiles, birds and some marsupials, repre-

sents an intermediate form between IT and OT. The
pressin are nine-amino peptides (nanopeptides) and differ only by two
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hypothesis of an intermediary character of mesotocin is sup-

ported by the fact that it is also present in lungfish, the closest

relatives of the Devonian lobe-fin fish group, from which

amphibians evolved [15,17]. On the other hand, some pouched

mammals possess both MT and OT [15]. Arginine vasotocin or

vasotocin (AVT), found in all classes of vertebrates, is a non-

mammalian analogue and a precursor of vasopressin [18,19].

The evolutionarily conserved structure suggests that the basic

function of nanopeptides, such as the control of osmotic pres-

sure, has been also preserved [15]. The supporting evidence

comes from cartilaginous fish, which use alternative osmoreg-

ulatory mechanisms. These animals synthesize a variety of nine

amino-acid peptides, such as glumitocin, aspargtocin, valitocin

and other [15].
4. Amorous liaisons and their chemicals

Apart from their homeostatic role in osmoregulation, nano-

peptides are commonly involved in modulating reproductive

behaviors. This function emerged early in the process of evolu-

tion and is already present in bony fish, which synthesize

ancestral peptides – isotocin and vasotocin. For example, a re-

cent study demonstrates that exogenous IT stimulates an ap-

proach toward visual stimuli of conspecifics in male goldfish,

whereas an administration of AVT produces an opposite effect

[20]. Isotocin and vasotocin are also implied in the modulation

of other piscine mating behaviors, such as sex-typical vocaliza-

tions [19].

Ascending the evolutionary tree, more evidence of the

involvement of the nanopeptides in the animal courtship can

be observed. Amphibian studies show that AVT enhances

responding to sexual stimuli in olfactory, visual and tactile

modalities [21]. For instance, by increasing secretion of male

pheromones in salamanders, vasotocin augments female recep-

tivity [7]. In addition, exogenous AVT potentiates male behav-

ioral reply to sexually mature females seen through the glass

[21]. Furthermore, an administration of AVT in amphibians in-

creases a clasping behavior (embracing a female by a male with

his fore and hind legs) triggered by a tactile stimulation in the

cloacal region [21]. The enhancing effects of the nanopeptide

on the responses to the arousing stimuli involve lowering the

threshold of the stimulus processing, as well as direct actions

on motor pathways, which control the behavior [7,21]. This is

accomplished by a discrete distribution of the neuropeptide-

containing cells and the relevant peptidergic receptors. It has

been demonstrated by numerous studies across various verte-

bral taxes that these two factors are regulated by gonadal hor-

mones, [7,18,21,22]. Consequently, this form of regulation

leads to a sexually dimorphic expression of neuropeptides

and their receptors in the brain [21]. For example, the rise of

testicular hormones (testosterone, dihydrotestosterone) levels

in the circulation boosts concentrations of AVT and its recep-

tors in the male bullfrog’s vocalization centers [18]. This, in

turn, increases a frequency of the mate calls. Analogous estra-

diol-driven changes in the female frogs facilitate the phonotaxis

– an approach to the source of the advertisement calling [18,21].

Thus these differences in the expression of peptidergic cells may

underlie sexually complementary functions.

Sexually dimorphic distribution of nanopeptides in the brain

with resultant functional consequences is well-manifested in

mammalian species. Although vasopressin and oxytocin are
important modulators of reproductive behavior in both sexes,

AVP seems to be more critical for various aspects of male sex-

uality, whereas OT is a key factor controlling female sexual re-

sponses [3]. This is best demonstrated by rodent studies, which

indicate vasopressin’s involvement in male courtship, as well as

territorial scent marking and intermate aggression [3]. In con-

trast, oxytocin has been indicated in mediating female receptiv-

ity, such as displaying a characteristic arch-backed lordosis

posture, which permits mounting, intromission and ejaculation

by a male [3].

Human research demonstrates that OT and AVP are implied

in human sexual response [23]. Both peptides are released into

circulation during arousal in men and women [23]. Studies

using continuous plasma sampling through indwelling cathe-

ters reported significant increase of OT levels during orgasm

in both sexes [24,25]. The rise of plasma oxytocin positively

correlated with the intensity of orgasmic contractions as mea-

sured by anal electromyography [25]. Interestingly, one study

with human male subjects revealed distinct temporal charac-

teristics of the peptide release [26]. It has been reported that

sexual arousal leads to an increase of circulating AVP, which

returns to baseline at a time of ejaculation. In contrast, OT lev-

els rise during ejaculation and reach baseline around 30 min

later [26]. This pattern of findings suggests different contribu-

tions of the neurohypophyseal peptides to the regulation of

sexual response. A recently published animal study demon-

strates that through modulating the GABA-ergic inhibition

AVP and OT have opposite effects on the amygdala activity,

with vasopressin exciting and oxytocin reducing the amygdala

activation [27,28]. The amygdala is a key structure in the emo-

tional processing [2]. It has been also implied in human sexual

response [29–31]. Therefore, it may be speculated that changes

in AVP and OT concentrations during sexual stimulation and

orgasm affect the amygdala activity and thus modulate the

level of excitation during intercourse, and in the postcoital

period.

However, copulation is not the only source of oxytocin surge

in mammals. Vaginocervical stimulation during labor and

suckling throughout lactation are both very potent triggers

of OT release from the posterior pituitary in females [14].
5. Born to be loved

The development of mother–infant bonds is often essential

for the survival of the offspring. Many mammalian species dis-

play potent maternal behavior right away after parturition.

Typically, predator species, which are born relatively imma-

ture and require a long-term parental care, may form bonds

for a longer period of time following the delivery [3]. In con-

trast, prey species are born capable of locomoting (in order

to escape the predator) and may get easily separated from their

parents. Therefore, these species develop mother–infant bonds

very quickly [3]. However, despite the temporal differences in

the bonding patterns, the underlying neurochemistry seems

quite similar across mammalian species [3].

Strongly expressed maternal behavior makes sheep a very

useful model of attachment [12]. Contrary to other species,

such as rodents, which easily accept strange new pups to their

nests, sheep and other ungulates display a highly selective

maternal behavior [3]. The rapid development of mother–in-

fant attachment suggests the critical involvement of events
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occurring during pregnancy and labor. Indeed, hormonal

priming with estradiol and progesterone in conjunction with

OT release during vaginocervical stimulation are effective in

inducing maternal behavior in virgin ewes [9]. What is more,

these same treatments reverse the existing rejection behavior

towards alien lambs [9]. Similar effects of the neurohypophy-

seal peptide may be observed in the rat model of attachment,

where intra-cerebral infusions of OT trigger maternal behavior

in virgin females [10]. Yet, oxytocin seems to be critical only

during bonding with the firstborns. The disruption of oxyto-

cinergic transmission when bonds with the firstborn pups are

already established or following subsequent pregnancies has

no effect on maternal tendencies [3].

Based on animal models, it has been hypothesized that hor-

monal priming during pregnancy stimulates in mammals the

synthesis of oxytocin and upregulates the expression of its

receptors in the relevant brain areas: the medial preoptic area,

the ventral tegmental area, the bed nucleus of stria terminalis,

the amygdala and the olfactory bulb [3,12]. As a result, the

potentiated oxytocinergic activity harmonized with the action

of other neurochemicals, such as prolactin, norepinephrine,

acetylcholine, glutamate and GABA contributes to the estab-

lishment of memories of the infant and the associated attach-

ment [3,12].

Nevertheless, nurturing in mammals often involves both

parents. This requires not only the development of parent–in-

fant attachment but sometimes necessitates the bond-forma-

tion between the two parents.
Fig. 2. The convergence of social recognition learning and reward
learning systems in the formation of pair bonds. The concurrent
activation of peptidergic social learning pathways and dopaminergic
reward pathways reinforces partner approach behavior and pair bonds
[11,32]; OT, oxytocin, AVP, vasopressin, DA, dopamine.
6. A little romance on the prairie

The prairie vole, better than any other species, enables us to

study the brain mechanisms of adult–adult bonding. Following

mating, these rodents form enduring, monogamous relation-

ships with their mates [11,12,32]. Moreover, after losing their

companion, prairie voles generally do not again attach to a

new partner [11]. In contrast, closely taxonomically related

montane voles do not bond with each other. Comparative

studies of these two species, which display distinct affiliative

patterns, provide insight into the neurochemistry of social

bonding [11].

Numerous studies indicate the vital role of vasopressin and

oxytocin in the formation of partner bonds in prairie voles

[11,12]. Either of the neurohypophyseal peptides infused into

the vole’s brain facilitates pair bonding in males and females,

even in the absence of mating [11,12]. Congruently, post-mat-

ing blockade of peptidergic receptors impairs subsequent bond

formation in prairie voles [11,12]. Oxytocin seems to be more

involved in bonding in females, whereas vasopressin in males

[11]. However, the presence of these peptides in the brain is

not sufficient to promote the establishment of an adult–adult

relationship. The augmentation of peptidergic transmission

using exogenous AVP or OT has no influence on boding in

nonmonogamous montane voles [11]. These findings led

researchers to investigate the distribution of oxytocin and

vasopressin receptors in the brains of both rodent species. In-

deed, in comparison to montane voles, their monogamous

cousins have higher densities of oxytocin receptors (OTRs)

in the nucleus accumbens, bed nucleus of stria terminalis,

and the lateral amygdala [33]. Additionally, in comparison to

their promiscuous relatives, prairie voles are characterized by
an increased expression of vasopressin receptor 1a (V1aR) in

the ventral pallidum and the medial amygdala [34]. A recent

study, using viral-mediated gene transfer, demonstrates the

crucial role of the peptidergic receptor distribution in shaping

social behavior of the voles [35]. By means of viral vectors,

promiscuous voles were engineered to express V1aRs in a man-

ner similar to their monogamous relatives. This manipulation

facilitated partner bond formation following mating in the spe-

cies that do not naturally bond [35]. Thus the alteration of

vasopressin receptor distribution may produce major behav-

ioral changes, which profoundly affect social behavior.
7. Addicted to love

The amygdala is an important structure in processing social

signals, such as individual-specific olfactory ‘‘fingerprints’’ in

rodents [36]. Previous research has demonstrated that pepti-

dergic activation in the rodent amygdala is critical for the rec-

ognition of conspecifics or social learning [11]. For example,

OT knockout mice selectively fail to express memory for pre-

viously encountered conspecifics [36]. However, intra-amyg-

dala infusions of oxytocin are sufficient to restore social

learning in these transgenic rodents [36]. Similarly, blocking

of either OTRs in the nucleus accumbens or V1aRs in the ven-

tral pallidum impairs partner recognition in rodents [11].

The nucleus accumbens and the ventral pallidum, which re-

ceive projections from the amygdala, are crucial components

of the brain dopaminergic reward–learning system [11,12,32].

For instance, animal models demonstrate the involvement of

either of these structures in substance abuse and addiction

[32]. Therefore, it has been hypothesized that the release of

oxytocin and vasopressin during mating reinforces social sig-

nals by linking them to the dopamine reward pathways [32].

In fact, blocking the dopamine D2 receptor impairs, whereas

activating it induces partner bonding in prairie voles [32]. Ani-

mal data provide evidence that the formation of mother–infant

attachment also involves dopamine reward systems [12,32].

Neurohypophyseal peptides in concert with dopaminergic re-

ward circuits may thus in a similar fashion contribute to the

establishment of distinct forms of bonding (Fig. 2).
8. What about the feelings?

As it has been shown by numerous studies, vasopressin and

oxytocin are implied in mammalian reproductive responses,
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mother–infant attachment and pair bonding. In humans, all

these social behaviors are usually accompanied by associated

emotions and feelings, such as the feeling of love [6]. Therefore,

the question arises whether nanopeptides play a role in modu-

lating human affective states. Indeed, recent studies demon-

strate the possible involvement of oxytocin in romantic

feelings, as well as in controlling prosocial behaviors in human

subjects [6,37].

In one study, Gonzaga et al. instructed participating hetero-

sexual romantic couples to talk about their first date in order

to trigger romantic feelings [6]. The interaction between the

partners was videotaped and affiliation cues displayed during

this conversation were assessed. The partners were then asked

to report their own emotions and estimate the emotions of

their partner. The researchers observed that the momentary

experiences of romantic love have characteristic nonverbal dis-

plays, such as affirmative head nods, smiles, gesticulation and

leaning toward partner [6]. These behavioral displays were dis-

tinct and did not occur during expression of other emotions

(e.g. embarrassment, amusement or anxiety) [6]. In a subse-

quent experiment, the subjects were asked to recall the event

that triggered the romantic feeling. Several blood samples were

taken during this process in order to assess the levels of oxyto-

cin. The authors found that OT levels were positively related to

the behavioral displays of love [6]. Consistent with animal

studies, oxytocin may thus play a role in human feelings, which

are associated with commitment.

In another human study, researchers investigated the influ-

ence of exogenous OT on prosocial behaviors [37]. OT is

known to reduce stress and anxiety in animals [28,38]. Kose-

feld et al. designed an experiment, in which male volunteers

were given a task to invest a sum of money with another player

[37]. Before making their decisions, one group of subjects re-

ceived intranasal oxytocin, whereas another group received

placebo. The authors found that exogenous OT as compared

to placebo increases trust resulting in the willingness to invest

larger amounts of money with an anonymous player. In addi-

tion, this effect of the nanopeptide was not due to the aug-

mented tendency for risk behaviors [37]. Intranasal OT is

known to cross the blood–brain barrier [37]. Therefore, the ef-

fects of the peptide may be attributed to its action in the brain.

Kosfeld et al. are the first to publish a report showing that oxy-

tocin may modulate human prosocial behavior by increasing

trust [37]. Nevertheless, their study does not reveal neural

mechanisms, which are involved in OT’s action. One possibil-

ity is that the neuropeptide increases trust by decreasing social

fear. This may be achieved by acting on the amygdala, the key

site of emotional processing and social learning [2,28,39]. A re-

cently published study addressed this issue: using intranasal

OT and functional magnetic resonance imaging, Kirsch et al.

investigated an influence of this peptide on brain activity in re-

sponse to social fear stimuli, such as angry or fearful faces [40].

Previous studies demonstrated that looking at angry or fearful

faces activates the amygdala in human subjects [40]. Kirsch

et al. observed that exogenous oxytocin reduces amygdala

activation triggered by an exposure to social fear signals. More

interestingly, the same experiment revealed that the nanopep-

tide was also effective in attenuating the functional connectiv-

ity between the amygdala and the brain stem structures, which

are involved in mediating autonomous fear responses [2,28].

This suggests that oxytocin may facilitate prosocial attitudes

in humans by calming fear. Whether this mechanism
contributes to an experience of romantic feelings remains un-

known.
9. Till death do us part

The example of prairie voles demonstrates that social recog-

nition memories and associated pair bonds may produce life-

long behavioral effects. However, the monogamous social

structure as illustrated by prairie voles characterizes only 3–

5% of mammalian species [11]. In most mammals pair bonding

is closely related to its reproductive goal and resolves once this

goal is achieved. The question arises whether an enduring

character of social relationships in voles and other species re-

sults only from the initial bond formation or whether there

are other mechanisms that maintain already established bonds.

It has been proposed that peptidergic stimulation during mat-

ing strengthens social recognition memories and the resultant

partner approach behavior by linking them to the dopamine

reward circuits [32]. Yet, the question remains whether interac-

tions between the reward and social learning systems are also

required for supporting the existing bonds. So far there is no

answer to this question. However, studies of other learning

systems suggest that the persistence of learned behaviors in

animals may depend not only on the mechanisms subserving

the initial formation of memories but also on the mechanisms,

which actively maintain existing memories [41,42].

Numerous studies indicate that the development of long-

lasting memories requires an activation of cascades of molecu-

lar processes, which involve stimulation of receptors at syn-

apses, initiation of second messengers and transduction

pathways, as well as gene expression and synthesis of new pro-

teins [42,43]. These processes are referred to as memory consol-

idation and lead to the modification of synaptic connections

[42,43]. Various types of learning, including social and reward

learning undergo consolidation [38,44]. For long, it has been

believed that consolidation occurs only once in a life of a mem-

ory [43]. However, increasing number of data demonstrates

that reactivation of the memory through retrieval by present-

ing a learned cue initiates cascades of molecular processes

called reconsolidation, which when augmented enhance the

learned behavior [45] but when disrupted may lead to lasting

memory deficits [46–49]. Reconsolidation only in part recapit-

ulates consolidation [41,42]. Interestingly, emotional learning,

such as fear learning, which often produces life-long responses

to stimuli that were associated with the original threatening

event, undergoes reconsolidation processes and thus may be

augmented or impaired [45,50]. It has been recently demon-

strated that learned reward-seeking behaviors [48,49], as well

as social recognition memories undergo reconsolidation [51].

Animal studies indicate the involvement of neurohypophyseal

peptides in consolidation processes [28,38]. The question arises

whether peptidergic transmission is also involved in memory

reconsolidation and thus implied in maintaining existing mem-

ories and learned behaviors, such as partner preference. Fur-

thermore, it is well-established that the expression of

peptidergic cells in the brain is controlled by gonadal hor-

mones [7,18,21,22]. Therefore, it remains to be answered

whether changes in ovarian and testicular hormones levels

influence existing social bonds and associated behaviors. An

existence of plausible mechanisms supporting the maintenance
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of established bonds may help to explain why certain relation-

ships last life-long, whereas other do not.
10. Conclusions

The scientific pursuit of the mechanisms underlying social

emotions and behaviors reveals the critical role of neurohypo-

physeal peptides oxytocin and vasopressin. So far, however,

most of the findings come from animal models. It has not been

determined whether the same mechanisms control human and

rodent pair bonding [11]. Another difficultly, related to human

studies is that systemic drug administration, such as intranasal

OT may produce its effects anywhere in the organism. Yet, ani-

mal studies help to identify peptidergic circuits in the brain.

These findings may be subsequently applied in human func-

tional brain imaging experiments.

Translational research of the social brain is getting us closer

to the understanding of the matter of love.
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