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Abstract
Background: The counterfactual or potential outcome model has become increasingly standard
for causal inference in epidemiological and medical studies.

Discussion: This paper provides an overview on the counterfactual and related approaches. A
variety of conceptual as well as practical issues when estimating causal effects are reviewed. These
include causal interactions, imperfect experiments, adjustment for confounding, time-varying
exposures, competing risks and the probability of causation. It is argued that the counterfactual
model of causal effects captures the main aspects of causality in health sciences and relates to many
statistical procedures.

Summary: Counterfactuals are the basis of causal inference in medicine and epidemiology.
Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in
observational studies. These problems, however, reflect fundamental barriers only when learning
from observations, and this does not invalidate the counterfactual concept.

Background
Almost every empirical research question is causal. Scien-
tists conducting studies in medicine and epidemiology
investigate questions like "Which factors cause a certain
disease?" or "How does a certain therapy affect the dura-
tion and course of disease?" Clearly, not every association
is temporarily directed, and not every temporarily directed
association involves a causal component but might be
due to measurement error, shared prior factors or other
bias only. The only sine qua non condition for a causal
effect in an individual is the precedence of the factor to its
effect, and 100% evidence for causality is impossible. This
insight dates back at least to the 18th century Scottish phi-
losopher David Hume [[1]; 2 chap. 1]. The question is
how much evidence for a causal effect one can collect in
practice and what statistical models can contribute to such
evidence.

The history of causal thinking, especially in philosophy, is
a history of controversies and misunderstandings. For a
detailed description of these controversies, see [[1]; 2,
chap. 1; [3,4]]. In this article, I argue that the counterfac-
tual model of causal effects captures most aspects of cau-
sality in health sciences. A variety of conceptual as well as
practical issues in estimating counterfactual causal effects
are discussed.

The article is organized as follows: In the first two sections
of the Discussion part, the counterfactual model of causal
effects is defined, and some general aspects on statistical
inference are discussed. The next chapters provide an
overview on causal interactions and causal inference in
randomised and nonrandomised studies. In the last two
sections, several special topics and related approaches for
assessing causal effects are reviewed.
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Discussion
1. The counterfactual model of causal effects
Statistics cannot contribute to causal inference unless the
factor of interest X and the outcome Y are measurable
quantities [3]. The temporal direction can be assessed
with substantial knowledge (e.g. gender may effect diet
but not vice versa) but substantial knowledge might be
uncertain or even wrong. Alternatively, it can be estab-
lished through the study design. Here, the causal order is
ideally guaranteed by a condition in an experiment that
has been manipulated before an outcome is measured [5].
If an experiment is not feasible, it is preferable to infer the
temporal direction from a prospective design (e.g. a
reported traumatic event at the baseline assessment as a
potential risk factor for incident depression during the fol-
low-up period) instead of collecting information on the
temporal direction retrospectively in a cross-sectional
study [[1]; 6 chap. 1]. Generally, in non-experimental
studies, measurement error can occur not only in both X
and Y but also in the assessment of their temporal
direction.

To define a causal effect in an individual i, let us assume
that we want to assess the effect of an index treatment or
exposure level t (e.g. intake of a specific drug) as com-
pared to another treatment or exposure level c (e.g. no
treatment) on an outcome Yi. The outcome can be binary
or quantitative (e.g. the amount of segregation of a hor-
mone or a psychological score). According to Greenland
and Brumback [7], we basically assume in counterfactual
inference that

(a) at the fixed time point of assignment, the individual i
could have been assigned to both treatment levels (Xi = t
or Xi = c) and

(b) the outcome Yi exists under both Xi = t (denoted by
Yi,t) and Xi = c (denoted by Yi,c).

Counterfactuals and potential outcomes
Obviously, the outcome can be observed only (or more
precisely, at most) under one, and not under both condi-
tions. If individual i is assigned to treatment level t, then
Yi,c is unobservable; likewise, if individual i is assigned to
treatment level c, then Yi,t is unobservable. The treatment
that individual i actually does not receive is called counter-
factual treatment. Likewise, the outcome under this treat-
ment is referred to as counterfactual or potential outcome.
The term potential outcome reflects the perspective before
the treatment assignment and is more widespread in sta-
tistics (e.g. [8]). In contrast, the term counterfactual out-
come denotes the perspective after the allocation; it
originated in philosophy and has caught on in epidemiol-
ogy (e.g. [2]). Throughout this paper, I shall use the term
counterfactual.

A meaningful counterfactual constitutes a principally pos-
sible condition for individual i at the fixed time of assign-
ment. For example, having a certain gynaecological
disease instead of not having it would be an odd counter-
factual condition for men. As a consequence, "influences"
of intrinsic variables like sex, race, age or genotype cannot
be examined with counterfactual causality in most con-
texts [9]. Whether "effects" of such variables should be
labelled causal is controversial [7]; see [10,11] for conflict-
ing opinions. If the discussion on causal effects, however,
is restricted to those variables that might, at least in prin-
ciple, be manipulated, this controversy is no longer rele-
vant. Other factors are hardly subject to empirical research
and do not serve for intervention.

In general, counterfactuals are quite natural, and,
although sometimes claimed [12], there is nothing "eso-
teric" or "metaphysical" about them. Counterfactual
reflections seem to play a vital role in creativity when
human beings deal with "what would have happened if"
questions [13]. In quantum physics, they have even meas-
urable consequences [14].

Definition of causal effect
There is a causal effect of treatment level t versus treatment
level c in individual i at the time where treatment is assigned if
the outcomes differs under both conditions [e.g. [15]]:

Yi,t ≠ Yi,c.

The magnitude of the effect can be defined in various ways:
for instance, as the difference in the outcome between the
two treatment levels:

Yi,t - Yi,c.

If the outcome is strictly positive, one may also use the
ratio. The choice of a measure, however, affects the inter-
pretability of a summary of individual effects as the pop-
ulation average effect, and the interpretability of
heterogeneity of individual effect magnitudes as causal
interaction (see sections 2 and 3).

To imagine a causal effect in a binary outcome suppose
that an individual i had a particular disease. After having
received a certain treatment (Xi = t), the person no longer
has any symptoms of the disease (Yi,t = 0). The question is
whether the treatment was the cause of the remission of
the disease – in comparison to another treatment level
(e.g. Xi = c: "no treatment"). Within the counterfactual
conception, this question is equivalent to the one whether
the disease would have persisted if the comparison treat-
ment level c had been assigned to the same individual i at
the same time, that is, whether Yi,c = 1. According to Mal-
donado and Greenland [16], this definition of a counter-
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factual causal effect on a binary outcome dates back to the
18th century when the Scottish philosopher David Hume
wrote:

"We may define a cause to be an object followed by
another ... where, if the first object had not been, the sec-
ond never had existed."

Counterfactual causality was the central idea that stimu-
lated invention of randomised experiments by Ronald A.
Fisher and statistical inference on them by Fisher around
1920 and, later, by Jerzey Neyman and Egon Pearson in a
somewhat different way [3,17]. Much later, in 1974,
Rubin [18] has firstly applied the counterfactual model to
statistical inference in observational studies.

Choosing the reference treatment
The first difficulty in assessing counterfactual causal
effects is to choose the reference condition when compar-
ing one treatment level t with another treatment level c,
that is, the substantive meaning of "treatment c". This
does not yet constitute a real problem, because researchers
should know against what alternative condition the effect
of the index treatment is to be evaluated. For instance, in
drug treatment trials, the effect of a drug treatment is often
examined against that of a placebo treatment (placebo-con-
trolled trial), because an effect resulting from the patient's
impression of being treated is not the relevant kind of
effect in most cases. On the other hand, if a drug has
already been shown to have a positive effect, treatment
with this drug may serve in comparing the efficacy of a
new drug (drug-controlled trial). Thus, in drug-controlled
trials a different effect is estimated than in placebo-con-
trolled trials.

Multiple causal factors and causal mechanisms
In the counterfactual model, a causal factor is a necessary
factor without which the outcome (e.g. treatment success)
would not have occurred. As the condition is not required
to be sufficient for the outcome, multiple causal factors
are allowed. This is in line with the fact that the etiology
of most physical diseases and almost all mental disorders
(e.g. [19]) is multi-causal, resulting from a complex inter-
play between genetical and environmental factors. Fur-
thermore, a causal effect does not have to be a direct effect.
This is desirable because an intervention like drug pre-
scription by a doctor (if the patient complies) often causes
an outcome by triggering a whole cascade of consecutive
events (of biological, biochemical, mental or social ori-
gin), which, in turn, affect the outcome (directly or indi-
rectly). In the causal graph shown in Figure 1, there is no
direct effect of X on Y, but X causes Y by affecting Z, which,
in turn, influences Y.

Investigating a causal effect does not require knowing its
mechanism. The ability to explain an association, how-
ever, often supports the conclusion that it has a causal
component (especially if the explanation is given before a
researcher looks at the data). The mechanism of an effect
is closely related to the terms of effect-modifying and
mediating variables. An effect-modifier (or moderator) is
neither affected by X nor by Y – but is associated with a
"different effect of X on Y" (see section 3); a mediator is
affected by X, and, in turn, has an effect on Y.

2. Statistical inference on counterfactual effects
As already mentioned, one can evaluate a fixed individual
i at a fixed time only under one condition (Xi = c or Xi = t).
Usually, no objective criteria exist to assess with a single
observation whether an outcome, such as treatment suc-
cess (Yi,t = 1) has been caused by the received treatment or
by other factors. One exception is ballistic evidence for a
bullet stemming from a particular gun and found in a
killed person [20] (but here, evidence is still uncertain

Causal graph for an indirect effect of X on Y via ZFigure 1
Causal graph for an indirect effect of X on Y via Z.
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because the person could have died of sudden coronary
failure at the moment the bullet was fired, but this possi-
bility can be checked by autopsy). In the absence of such
criteria, one can only estimate average causal effects. This
requires several observations, involving different individ-
uals or different time points or both. Many observations
are also required for statistically stable conclusions.

Average causal effects
The aim is to estimate the average causal effect, that is, the
average of the individual causal effects in the target popula-
tion. The target population includes all the individuals on
whom inference is to be made, whereas the population
the sample is actually taken from is the source population
[[2]; chap. 20]. Ideally, the source population equals the
target population, and the individuals are randomly sam-
pled from that population. If the sample is taken from
another than the target population, selection bias will
arise if the average causal effect in the source population
differs from that in the target population. Moreover, the
existence and magnitude of different biases (e.g. con-
founding [21], see below) depend on the choice of target
population, and information on biases stemming from
populations other than the target population might not
apply.

To be interpreted as an estimate of the population average
effect, the difference between the arithmetic mean in X = t
versus X = c (summary over all individuals in the respec-
tive treatment group) has to equal the arithmetic mean of
the differences at the level of the individuals. Linear differ-
ences can always be interpreted in this way [22], whereas
for multiplicative measures like the mean ratio and the
risk ratio the geometric mean has to be used instead. The
population average interpretation of the summary odds
ratio, however, becomes increasingly false with an
increasing number of individuals at high risk for the out-
come (under one or both conditions) [22].

The following discussion is restricted to the more frequent
case of a sample consisting of different individuals rather
than of different time points (or both).

Stable-unit-treatment assumption
Before treatment assignment, there are two random varia-
bles for each individual i in the population: the outcome
under treatment c (Yi,c) and the outcome under treatment
t (Yi,t). Although the theory can be extended accordingly
[23], I shall now assume for simplicity that the outcomes
of individual i are independent of the outcomes of other
individuals and their received treatment levels. This is
referred to as the stable-unit-treatment-assumption [23].
Note that this might be a quite restrictive assumption: it
does not hold for contagious diseases as outcome. Influ-
enca is such a disease in which the immunisation of cer-

tain individuals may affect the others (called "herd effect",
e.g. [24]). After treatment assignment and the observation
of the outcome, a sample of n individuals contains (at
most) one realisation of the outcome for each individual
i where the outcome corresponds either to treatment level
t or c. Therefore, from the statistical point of view, the esti-
mation of causal effects can be regarded as a particular
problem of missing values (e.g. [17]).

Exchangeability
Suppose the average causal effect is defined as the differ-
ence in means in the target population between both con-
ditions X = t and X = c. Then the simplest way to estimate
it is with the difference between the two sample means

(denoted by  and , resp.). If individuals with X = c
and X = t are "exchangeable", average causal effects can be

directly estimated as  without bias due to assign-
ment (bias might exist anyway due to other causes such as
measurement or selection). Exchangeable means that two
conditions have to be fulfilled [21,25]:

a) The distribution of the unobserved outcome Yt under
actual treatment c is the same as that of the observed out-
come Yt under actual treatment t; that is, under counterfac-
tual treatment with t, the individuals actually treated with
c would behave like those actually treated with t; individ-
uals having received treatment t are substitutes for individ-
uals having received treatment c with respect to Yt.

b) The distribution of the unobserved outcome Yc under
actual treatment t is the same as that of the observed out-
come Yc under actual treatment c; that is, under counter-
factual treatment with c, the individuals actually treated
with t would behave like those actually treated with c;
individuals having received treatment c are substitutes for
those who have received treatment t with respect to Yc.

Note that, if individuals actually having received treat-
ment c and t, respectively, correspond to different popula-
tions and inference is to be made solely on one of these
two populations, then only either assumption a) or b) is
required. For instance, if inference is to be made only on
the population having received treatment c, condition a)
is sufficient.

In the section on causal inference, I will provide an out-
line on how exchangeability relates to different study
designs and what statistical methods can contribute to
approach unbiased estimation of causal effects if the
optimal design (a perfect randomised experiment) is not
feasible.

Yt Yc

Y Yt c−
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3. Heterogeneity in causal effects
An important issue is the assessment of differences in
causal effects between individuals. Clearly, a necessary
condition for a factor Z to be a modifier of the effect of X
on Y is that Z precedes the outcome Y. If such a potential
effect-modifier Z is associated with X, the parameter that
describes the modification of the effect of X on Y is not
identified without making further assumptions. Effect-
modifiers are typically assessed with interaction terms in
regression models.

Choice of the effect measure
Whether and, if yes, to what extent the degree of an effect
differs according to the values of Z depends, however, on
the choice of the model and the associated index of effect
magnitude. As mentioned above, some effect measures
(e.g. the odds ratio) usually serve only to quantify the
magnitude of a causal effect supposed to be constant
between the individuals.

Moreover, the risk difference is the only measure for
which effect heterogeneity is logically linked with causal
co-action in terms of counterfactual effects. To explain
this, it is necessary to define the causal synergy of two
binary factors, Xi and Zi (coded as 0 or 1), on a binary out-
come Yi in an individual i (at fixed time).

Clearly, if Xi and Zi do not act together in causing the event
Yi = 1, then

(a) if Yi = 1 is caused by Xi only,

Yi = 1 if (Xi = 1 and Zi = 0) or

(Xi = 1 and Zi = 1)

and Yi = 0 in all other cases. Thus, Yi = 1 occurs in all cases
where Xi = 1 and in no other cases.

(b) if Yi = 1 is caused by Zi only,

Yi = 1 if (Xi = 0 and Zi = 1) or

(Xi = 1 and Zi = 1)

and Yi = 0 in all other cases. Thus, Yi = 1 occurs in all cases
where Zi = 1 and in no other cases.

Therefore, causal synergy means that 1) Yi = 1 if either one
or both factors are present and 2) Yi = 0 if neither factor is
present. Now, one is often interested in superadditive risk
differences, where the joint effect of X = 1 and Z = 1 is
higher than the sum of the effects of (X = 1 and Z = 0) and
(X = 0 and Z = 1) as compared to the risk for Y = 1 under
(X = 0 and Z = 0), that is,

P(Y = 1 | X = 1, Z = 1) > P(Y = 1 | X = 1, Z = 0) + P(Y = 1 |
X = 0, Z = 1) - P(Y = 1 | X = 0, Z = 0).

If superadditivity is present, one can show that there must
be causal synergy between X and Z on Y, at least for some
individuals [[2], chap. 18; [26,27]]. This relation does not
apply in the opposite direction: If there is causal synergy
among some individuals there may be no superadditivity.
Thus, one can demonstrate rather a causal interaction
than its non-existence. Note that other logical relations do
not exist and the risk difference is the only measure for
which such a logical link exists [[2]; chap. 18; [26,27]].
Also, other measures like correlations, standardised mean
differences or the fraction of explained variability do not
serve to quantify the degree of causal effects because they
mix up the herefore solely relevant mean difference with
parameters of exposure and outcome variability [28].

Another crucial point for the choice of effect index is
whether the interaction terms in regression models corre-
sponds with so-called mechanism-based (e.g. biological)
interactions [29]. For instance, if the dose of intake of a
particular drug is known to influence the release of a cer-
tain hormone linearly, then the interaction term of
another factor with drug intake in a linear model corre-
sponds to the presence of a biological interaction.

Deterministic versus probabilistic causality
A fundamental question relating to heterogeneity in
causal effects is the distinction between deterministic and
probabilistic causality [[2], chap. 1; [30], chap. 1]. The
functional-deterministic understanding of causality is
based on the Laplacian conception of natural phenom-
ena, which are assumed to follow universally valid natural
laws. Here, in the absence of measurement error and other
biases, the observable heterogeneity in Y – given X and the
other observed covariates – would be attributed solely to
unobserved factors. If we knew the causal mechanism
completely (how complicated it may be) and the values of
all the causal factors, the outcome Y would be exactly
determined. Note that I have implicitly used this assump-
tion in the previous discussions.

Within the probabilistic understanding of causality, indi-
vidual variation exists within the outcome Y, which can
not be explained by unconsidered factors. This variation
might be called real randomness and can be found in quan-
tum physics [14]. It is possible to incorporate real ran-
domness into counterfactual models because one can
specify a probability distribution for a potential outcome
of a fixed individual at a fixed time [[7] and references
therein]. In real situations, however, the distinction
between deterministic and probabilistic causality does
not play a major role in systems that are complex enough
for substantial residual heterogeneity in the modelled
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effect to be expected. Here, the effect is practically proba-
bilistic. Such a situation is rather the rule than the excep-
tion in medical and behavioural sciences.

On the other hand, after incorporating major effect-mod-
ifiers into a model, the effect of X on Y should be suffi-
ciently homogeneous to allow for uniform interventions
in the subpopulations defined by the values of the effect-
modifiers. As a consequence of the existence of effect-
modifiers, a variation in their distribution across different
populations implies that one would expect to estimate
different effects if the modifiers were not considered in a
model. Thus, differences in estimates of effects do not
imply that different causal mechanisms act; instead, they
might be solely due to different distributions of hidden
effect-modifiers [[2], chap. 18; [16]]. Interactions with
intrinsic variables; that is, individuals' immutable proper-
ties like sex, race and birth date are often regarded as an
indication of a narrow scope of a model [31]. On the
other hand and as mentioned above, nonmanipulable
properties are hardly subject to counterfactual arguments.

4. Causal inference in randomised and non-randomised 
studies
Randomised experiments
As already mentioned, if the individuals are exchangeable
between the treatments and there are no other biases,
causal effects can be directly estimated, most simply with
the difference in the mean of Y between X = c and X = t. A
stronger assumption than exchangeability is related to the
propensity score. The propensity score is the probability of
individual i being assigned to treatment t – at the time
when group assignment to X = c or X = t takes place,
denoted with PSi = P (Xi = t). The assumption that the pro-
pensity score is equal among the individuals with X = c or
X = t is stronger than the assumption of exchangeability
because the determinants of the propensity score do not
necessarily affect the outcome Y.

In a simple randomised experiment, PSi is equal for all
individuals. For example, in an experiment with balanced
groups, the individuals are assigned to each treatment
with a probability of 50%: PSi = 1/2 for all i. More sophis-
ticated designs incorporate a covariate or, more generally,
a vector of covariates Zinto the group assignment (block
designs). Provided that such covariates are also factors of
the outcome, considering them often yields increased sta-
tistical precision in the estimate of the causal effect. In ran-
domised experiments, the propensity score is a known
function g of the realisations zof Z; that is, PSi = g(zi) and
the joint distribution of Yc and Yt is conditionally inde-
pendent of X given Z, a property called strong ignorability
[8]. Now, one can show that X and Zare conditionally
independent given the propensity score; that is, the pro-
pensity score PS summarises all information contained in

Zabout the group assignment [8]. As a consequence, the
mean effect of X on Y can be approximatively estimated
without bias due to assignment if the entities are matched
pairwise according to the propensity score, if they are
weighted proportionally to the inverse propensity score,
or if the propensity score is adjusted for in a suitable
regression model [8]. From a Bayesian perspective, the
estimates of the propensity score are posterior probabili-
ties to predict the allocation to exposure (X = t) under Z =
z [32]. The problem with the propensity score is that it is
sufficient to control for but not minimally sufficient (it
may include unnecessary information due to covariates
related to Y but not to X).

Imperfect experiments
In the discussion above I have implicitly assumed that
treatment and control protocols were followed exactly; in
that sense, the experiments were supposed to be perfect.
In many studies, however, the actual treatment and con-
trol conditions do not equal the intended protocols, at
least, not for some individuals or measurement points
(imperfect or broken experiments). For instance, in the phar-
macotherapy of depression with antidepressants, one
often faces the problem that many individuals in the anti-
depressant treatment group (X = t) stop drug intake as, in
the beginning, they experience only adverse effects [33].
According to Imbens and Rubin [34], imperfect experi-
ments constitute the bridge between experiments with
ideal compliance and observational studies.

Instrumental variables
If one ignores the fact that the treatment conditions were
not exactly followed, one estimates the effect of the
intended, not of the actual treatment. This is referred to as
intent-to-treat analysis. Alternatively, one can estimate the
effect of the treatment among those who complied. This can
be done with approaches based on instrumental variables.
Roughly speaking, an instrumental variable I is a variable
that is associated with the actual treatment or exposure X
but that related to the outcome Y only through its associ-
ation with X. Maybe the most important example for an
instrumental variable is the intended treatment. The basic
idea of such approaches is that one can – under certain
conditions that vary with the specific problem – compute
the X - Y association or bounds of it from the I - X and the
I - Y association [35,36]. These methods are useful when
the observed X - Y association is more confounded than
the I - X and the I - Y associations. Another situation where
instrumental variable methods apply is when not X but
only a surrogate I of it can be directly observed. The asso-
ciation between I and X then has to be known or
estimable, and differences between I and X have to be
independent of other variables [35,36].
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Observational studies
Not every interesting factor can be translated into equiva-
lent lab settings or can be manipulated. Factors like social
support or peer relationships are difficult to observe out-
side their natural environment. Other conditions should
not be assigned to human beings for ethical reasons (e.g.
smoking). In such cases, there is no way but to conduct an
observational study. In observational studies, the group
assignment is neither manipulated nor randomised. The
group status X is a random variable subject to measure-
ment error, and the individuals assign themselves to X = c
or X = t, for example, by deciding to smoke or not to
smoke.

The propensity score then typically depends on a variety
of variables (denoted as vector Z). Often, not all of such
factors are observable or even known. Researchers con-
ducting epidemiological and nonrandomised clinical
studies should aim at collecting data on the major deter-
minants of X to allow for an adequate control of con-
founding. Note that variables associated with X but not
with Y can often be ignored. However, they can serve to
reduce the variance in normally distributed outcomes, but
adjusting for them sometimes yields unnecessarily high
variances in outcomes with other distributions [8].

In many practical situations, one should assume substan-
tial residual bias due to unobserved determinants of the
exposure X, which, in turn, affect Y. Such kind of bias is
referred to as confounding. A confounder is a variable that is
associated with both X and Y and that precedes X; and
adjusting for it reduces the overall bias in the estimation
of the causal effect of X on Y [[2], chap. 15]. In practice,
however, it is not determinable whether a certain variable
is a confounder because this depends on all (other) con-
founders and biases together. If Zl is a candidate for a con-
founder, the difference between the means under X = t
and X = c adjusted for Zl might be biased more strongly
than the unadjusted mean difference. This can happen,
for instance, if other, more important factors of group
assignment are distributed more unequally across X = c
und X = t after stratification than they were before stratifi-
cation on Zl [[7], and the references therein].

Pearl [[30], chap. 3; [37]] has discovered formal criteria
within the framework of graphical models (the "back-
door" and "frontdoor" criterion, resp.) that indicate
which set of covariates is sufficient to be controlled for.
Applying these criteria, however, requires assumptions on
the causal system that causes X and Y. Some of the varia-
bles that cause X and Y, in turn, are often unobserved or
even unknown.

Methods to adjust for unobserved confounding and other biases
There are various approaches to address unobserved con-
founding, bias due to measurement error, selection, and
other biases. The first method is sensitivity analysis, which
examines what impact one or several supposed scenarios
of bias would have had on the results at hand. The results
depend on the presumed values of bias parameters like
misclassification probabilities, the distribution of a con-
founder, and the magnitude of it's effects on X and Y. For
a general model for sensitivity analyses, see [38]. Rosen-
baum [39] has proposed a general framework to assess
how sensitive a particular study design is against assign-
ment bias. The problem with sensitivity analysis is that
only the range of expected results under different specified
values for the unknown bias parameters is revealed [40].

This drawback is solved with Monte Carlo sensitivity anal-
ysis. Here, distributions are assigned to the unknown bias
parameters, which reflect a researcher's knowledge or
assumptions about their true values. Bias-corrected point
and interval estimates can then be calculated. The results
from these methods have approximatively a Bayesian
interpretation if additional uncertainty is added (as would
be the case if one drew random numbers from the poste-
rior distribution of the unknown effect), the estimator of
the causal effect is approximatively efficient, and the data
provide no information on the bias parameters [[40] and
references therein].

(Monte Carlo) sensitivity analyses and Bayesian methods
outperform conventional analyses, which often yield
overconfident and biased results because they are based
on wrong point priors at zero (e.g. misclassification prob-
abilities) at the parameters determining bias [40]. This is
true as long as the assumptions made are not fundamen-
tally wrong (e.g. bias downward instead of upward, [41]).
In conventional analyses, the farther the left boundary is
from the null, the more room there is for bias and extra-
variation. Moreover, a statistically significant difference
does not imply that the association found is strong
enough to be of a clinical or policy concern; the absence
of a statistically significant association often does not even
rule out a strong relation (e.g. [[2], chap. 12; [42]]).
Hence, it is essential to quantify the degree of association
also in perfect randomised experiments and to report an
interval estimate.

5. Some more special issues
Time-varying exposures
In many applications, the exposure level X is not a con-
stant condition but a sequence of treatment levels (gener-
alised or g-treatment) that varies within individuals over
time. For instance, Robins et al. [43] have investigated the
effect of prophylaxis therapy for pneumocystis carinii
pneumonia (PCP, an opportunistic infection in AIDS
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patients) on survival times among AIDS patients in an
uncontrolled study. In medical studies, the exposure level
often varies over time, for example, because physical com-
plications require a change in treatment or because indi-
viduals deposit drug intake because of adverse effects.

The problem with time-varying systems is that they are
subject to feedback mechanisms: The causes at fixed time
q might not only be affected by causes of the outcome
occurring before time q (confounding), but they may also
impact later time-dependent causes [44,45]. For instance,
the outcome at time q-1 may be a mediator for the out-
come at time q, but a confounder of the exposure at time
q. As in the above example statistical inference for causal
effects of time-dependent exposures is often based on sur-
vival time as outcome and, therefore, on survival models.
The associated methods easily become complicated
because one often has to take several issues into account.
These include measured and unmeasured confounder
adjustment, feedback mechanisms and censoring (not all
individuals are observed throughout the whole investiga-
tion time). Then they still share all the limitations of con-
ventional methods in observational studies (bias due to
measurement, selection etc., [45]).

Details of statistical models are rather technical and thus
beyond the scope of this paper. Briefly, Robins [44] has
derived a general recursive g-computation algorithm, from
which he has derived non-parametrical tests. These tests,
however, turned out to be impractical for inference more
sophisticated than simple null hypothesis testing (e.g.
[45]). Later, more flexible semiparametric models (called
g-estimation) of survival outcomes were developed (e.g.
[43]). These models make assumptions merely on the
form of the difference between the treatment levels rather
than on the shape of the outcome distribution within the
same treatment (and covariate) level. An alternative
approach is provided by so-called "marginal structural
models" and "inverse-probability of treatment-weighted
estimators". In the case of censoring, these methods are
less complex than g-estimation at the cost of requiring
stronger assumptions here [45]. However, they often
allow for improved confounder adjustment [46]. Gill and
Robins [47] have developed extensions of g-estimation
for continuous time.

Competing risks
Suppose that one is interested in the health burden attrib-
utable to a variable that is actually an outcome and not a
treatment action in the earlier sense. Let me borrow an
example from Greenland [48]: Suppose one is interested
in how the number of years lived after the age of 50 (T) is
affected by whether smokers died of cancer (Y = 1) or not
(Y = 0). Assume that a certain individual i was a male life-
time heavy smoker and died from lung cancer at the age

of 54 (Ti = 4 | Yi = 1). Now the estimation of Ti under Yi =
0 is unclear because it depends on how Yi = 0 was caused,
how death from lung cancer was prevented. If death by
lung cancer had been prevented through convincing the
individual not to smoke at all in his entire lifetime, then
the risk of other causes of death (e.g. coronary heart dis-
ease, diabetes, or other kinds of cancer) would be lower as
well. In this case, Ti under Yi = 0 might be considerably
higher than 4 years. On the other hand, if Y = 0 was caused
by chemotherapy, the risks of other diseases, named com-
peting risks [[48] and references therein] would not have
been reduced. Hence, the outcome Ti under Yi = 0 might
not have been much higher here than under Yi = 1. The
expected increase in years lived would thus be much
smaller if lung cancer was prevented by chemotherapy
than it would be if lung cancer was prevented by lifetime
absence of smoking.

To conclude, there is no single intervention in this case
that would be independent of an individual's history prior
to exposure. The evaluation of the effect of removing Yi =
1 depends on the mode of removal in a multivariate frame-
work. Therefore, effects of policies should be evaluated in
terms of actions that cause outcome removal rather than
in terms of outcome removal per se [48].

The probability of causation
A common problem is how to determine the probability
that an event in an individual has been caused by a certain
exposure, that is, the probability of causation (PC). Courts
define causation as an exposure without which the out-
come event would a) not have happened at all or b) have
happened later. Such a cause is named contributory cause
[49]. The empirical basis for an estimate of the probability
of causation in an individual is a sample of exposed indi-
viduals. This sample should be similar to the individual
under investigation with respect to the history of exposure
and (other) risk factors of disease. Then, one can estimate
the rate fraction (RF – often called "attributable fraction"),
the excess incidence rate due to exposure – relative to the
incidence rate if exposed, given by

where IRX = 0 and IRX = 1 denote the incidence rates in the
target population under exposure and under non-expo-
sure, respectively [[2]; chap. 3]. The etiological fraction (EF)
is defined as the fraction of exposed individuals with the
disease for which the exposure was a contributory cause of
the disease [[2]; chap. 3]. Now, the probability of causa-
tion in the individual equals the etiological fraction (PC =
EF) if the individual was randomly drawn from the target
population [49]. A common fallacy, however, is to con-
fuse the rate fraction RF with the probability of causation

RF
IR IR

IR
X X

X
=

−= =

=

1 0

1
,

Page 8 of 12
(page number not for citation purposes)



BMC Medical Research Methodology 2005, 5:28 http://www.biomedcentral.com/1471-2288/5/28
PC (in the sense of a contributory cause). To illustrate this
mistake algebraically, one can express the etiological frac-
tion as

where:

- C1 is the number of individuals in the population in
which exposure has caused an accelerated onset of disease
(i.e., under non-exposure, the disease would have
occurred anyway but later);

- C2 denotes the number of individuals in whom exposure
has caused all-or-none disease (i.e., without exposure,
these persons would not have contracted the disease at
all); and

- CT is the total number of persons exposed to the disease
(including also those individuals who have not been
affected by the exposure, [49]).

Now, one can show that, if the probability of the exposure
having an effect in the exposed is low, the rate fraction RF
approximately equals A2/AT [49] – a quantity known as
the excess rate [[2], chap. 4]. Thus in this case, the equa-
tion PC = RF approximatively holds only if A1 is small as
compared to A2. This means that the effect is required to
have an all-or-none effect in the vast majority of exposed
and diseased individuals. Otherwise, the probability of
causation is underestimated proportionally to the ratio
A1/A2. A fundamental problem with the estimation of PC
is the estimation of A1 – the number of exposed and dis-
eased persons who would have developed the disease later
under non-exposure. This estimation would require some
biological model (which seems to be rarely available) for
the progress of the disease [49]. Robins and Greenland
[50] have provided upper and lower limits for the proba-
bility of causation that are consistent with the data. Pearl
[51] showed under which conditions the probabilities
that a factor was a necessary or a sufficient cause, respec-
tively, can be estimated from the data.

6. Related approaches to causal inference
The sufficient-component-cause model
Rothman [52] has proposed a model of causal effects that
is similar to but finer than the counterfactual model — the
sufficient-component-cause model. Entities in this model are
not individuals but mechanisms of causation. A mecha-
nism is defined as a combination of factors that are jointly
sufficient to induce a binary outcome event, Y = 1. Each of
possibly many of such mechanisms has to be minimally
sufficient: The omission of one factor would change Y
from 1 to 0; that is, the outcome event would no longer be

present. For instance, following an example by Rothman
[52], it is not sufficient to drink contaminated water to get
cholera; other factors are required as well. If, in this exam-
ple, drinking contaminated water is part of each mecha-
nism that leads to cholera, this constitutes a necessary
factor for cholera. For a fixed individual at a fixed time,
often several mechanisms are in line with the same coun-
terfactual effect [[2], chap. 18; [7]]. Therefore, the suffi-
cient-component-cause model is important rather for
conceptional than for inferential considerations. Roth-
man's [52] intention was to build a bridge between meta-
physical reflections and epidemiological studies.

Structural equation models
Especially in the fields of psychology, social sciences and
economics, structural equation models (SEMs) with latent
variables are frequently used for causal modelling. These
models consist of (a) parameters for the relations among
the latent variables, (b) parameters for the relations
among latent and observed variables and (c) distribu-
tional parameters for the error terms within the equations.
Pearl [30] has shown that certain nonparametric SEMs are
logically equivalent to counterfactual models and has
demonstrated how they can be regarded as a "language"
for interventions in a system. Furthermore, these models
are useful to structure and reduce variance, for example, to
reduce measurement error if several items on a question-
naire are assumed to represent a common dimension.

There are, however, several practical problems with the
use of SEMs. First, in an under-determined system of
equations, several assumptions are necessary to identify
the parameters (i.e. to make the estimates unique). In psy-
chological applications, the assumptions tend to be justi-
fied only partially [53] and models with alternative
assumptions are often not considered [54]. The results, on
the other hand, may be very sensitive against these
assumptions [55], and currently, there is no way to model
uncertainty in these assumptions. Besides, the coefficients
from these models are sometimes not interpretable as
measures of conditional dependencies (i.e. regression
coefficients), for instance, if there are loops in a model
[56]. Finally, the meaning of the latent variables remains
sometimes obscure, and — in economic applications —
results from certain structural equation models have been
found to fail to recur in experiments [57].

It is therefore recommended that one should be extremely
careful in the application of SEMs. For more sophisticated
discussions of the relations among structural equation
models, graphical models, the corresponding causal dia-
grams and counterfactual causality; see [7,30,31,58] and
the papers cited therein.

EF
C C

CT
= +1 2 ,
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The controversy on counterfactual causality raised by Dawid's article 
[12]
Dawid [12] has argued that counterfactuals were some-
thing metaphysical because causal inference based on
counterfactuals would depend on unobservable assump-
tions. In his own formulation of the counterfactual
model, Dawid assumed that a causal effect in an individ-
ual was composed of the average effect of treatment t ver-
sus c, an individual effect and an interaction term
treatment*individual. Different assumptions about the
unidentified individual parameters would yield different
conclusions about the variance of the counterfactual
effect. Such assumptions involved the joint distribution of
Yc and Yt for fixed individuals.

Together with Dawid's paper in the Journal of the Ameri-
can Statistical Association, not less than seven commen-
taries as well as Dawid's rejoinder [59] were published.
Cox [60] reproached Dawid for posing too general a ques-
tion and for going much too far with his conclusions: The
proof of a causal effect would not require knowing its
mechanism. Shafer [61], on the other hand, regretted that
David had been too mild in condemning counterfactuals.
Casella and Schwarz [62] mentioned that every scientific
investigation had to aggregate over different individuals.
Pearl [63] and Cox [60] argued that, in contrast to Dawid's
claims, several aspects of counterfactual causality were at
least indirectly testable. Wasserman [64] pointed out that,
as in every other kind of statistical models, the identifia-
bility of parameters would be essential in causal models
but that counterfactuals provided a quite useful concep-
tion. Robins and Greenland [65] brought up the point
that Dawid had largely neglected observational studies
and imperfect experiments. Probabilistic causal inference
(of which Dawid is an advocate) in observational studies
would inevitably require counterfactuals. Otherwise,
causal effects may not be identified without again making
unidentified assumptions. Rubin [66] considered the
modelling of the joint distribution of Yc and Yt as not
always necessary.

Dawid [12] rejects the counterfactual concept seemingly
because, on it's own, it is not powerful enough to solve the
fundamental problems of causal inference (e.g. in a fixed
individual at a fixed time one can observe the outcome
only under one condition). Depending on the question
and the design, there are indeed often unidentified
parameters. I argue that the fact that the concept does not
solve all problems does not mean that it is wrong; in that
sense, denying the usefulness of counterfactuals is as if a
doctor never prescribed a drug that may not remedy all his
patients, but several of them. Counterfactual causal think-
ing is based on imagining the consequences of changing
the value of a single factor in a comprehensive causal sys-
tem. What would the world look like after changing the

value of one variable (in one or several individuals) is
what some philosophers of science call the possible worlds
concept of causality [15] (see also [[30], chap. 7] for a for-
mal definition). Our imagination of possible worlds,
however, always depends on substantive knowledge
required to formulate a causal system that might have pro-
duced the data that one has observed. This, though, does
not mean that we should not ask for properties of possible
worlds because the decisions we aim to conduct (e.g.
which interventions to make) depend on these unknown
properties.

Summary
1. The counterfactual concept is the basis of causal think-
ing in epidemiology and related fields. It provides the
framework for many statistical procedures intended to
estimate causal effects and demonstrates the limitations of
observational data [10].

2. Counterfactual causality has also stimulated the inven-
tion of new statistical methods such as g-estimation.

3. The intuitive conception makes the counterfactual
approach also quite useful for teaching purposes [65].
This can be exemplified by illustrating the difference
among study designs. For instance, the benefit of longitu-
dinal over cross-sectional studies is easily demonstrated
when the aim is to study how several variables act together
over time when causing an outcome.

4. Counterfactual considerations should replace vague
conceptions of "real" versus "spurious" association, which
occasionally can still be read. In this context, the Yule-
Simpson paradox is often mentioned. This paradox indi-
cates that an association can have a different sign (positive
or negative association, resp.) in each of two different sub-
populations than it has in the entire population. How-
ever, if the temporal direction of the variables is added to
this paradox and there is no bias and random error, the
paradox is resolved: It is then determinable which associ-
ation is real and which is spurious in a causal sense.

5. Causal effects have been treated like a stepchild for a
long time, maybe because many researchers shared the
opinion that causality would lie outside what could be sci-
entifically assessed or mathematically formalised. Pearl
[30,37] was the first to formulate the difference between
changes in variables induced by external intervention in a
system and changes due to variation in other variables in
the system.
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