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Abstract

Selecting visual targets for saccadic eye movements is a vital step in sensorimotor processing.
This selection is made on the basis of target salience: a saccade tends to be made to the most
interesting part of the visual field. Both bottom-up and top-down processes have been postu-
lated to contribute to salience, but the exact mechanisms by which some areas of the visual field
are rendered to be more interesting than others remain unclear. We propose a computational
model to address this issue and investigate its significant features, relating it to neuroanatomy
and to aspects of cognitive function. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In any visual scene there are large number of potential targets for saccadic eye
movements. In practice, these are weighted according to their salience — how interest-
ing and relevant they are to the organism - with only the most salient being selected as
actual targets for saccades. Therefore there must be some representation of salience in
the brain. It is known that the areas of cortex which are involved in the generation of
saccades encode representations of spatial location. This suggests that some combined
representation — encoding spatial locations in terms of their salience — may be utilised.
Such a salience representation (SR) in the brain could represent spatial locations in
terms of how salient those locations themselves are: on the basis of learned cues for
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example. It could also weight the locations according to the salience of objects
currently or previously situated at (or anticipated to be at) those locations. The SR
could thus play a major role in the generation of eye movements, from fast single
saccades to antisaccades or memory-guided movements.

The factors contributing to salience are numerous and complex. They certainly
include “bottom-up” visual parameters, such as luminance contrast, size and colour
[20]. However, the fact that saccades can be directed to areas of visual space on the
basis of prior expectation, memory or emotional association indicates that “top-
down” influences must also contribute to what makes a target salient [6,14,17]. This
raises an important question: how can all these possible sources of information about
the visual world be combined to select targets for eye movements?

1.1. Generation of the SR

It has been suggested that bottom-up inputs are “filtered” or “structured” by
top-down inputs [ 19]. The latter provide an up-to-date high-level “hypothesis” about
what is expected, with which the former are continually compared. As it stands this
hypothesis implies that both are required at any given moment. However this is
clearly not the case. Novel objects, which by definition evoke no memories or
expectations, and which may have no emotional associations, nevertheless, evoke not
just orienting responses but also voluntary exploratory saccades. Conversely, expecta-
tion or memory can invest an otherwise unremarkable part of the visual scene with
significance for the organism. Thus the SR must be able to function over a wide
variety of possible inputs, each of which may or may not be present at any given time.
Furthermore, since auditory and mnemonic cues can be used to prime particular
locations, the inputs to an SR must also be multimodal.

So far only the inputs to the SR have been discussed. However, if the SR is to play
a part in the selection of targets for eye movements, further organisation of those
inputs is required. Crudely, any limb can only make one movement at a time. Multiple
areas activated by potential targets send convergent information to motor control
areas; that is, the potential targets can be said to compete for control of motor
outputs, with the most salient target winning. Because of this, and because of the
temporal limits of short-term memory for motor plans, which means that only a few
movements to targets can be stored, it is necessary to reduce the number of potential
targets. Furthermore, this reduction should enhance the selected minority relative to
the rest of the SR, since this will facilitate their ability to compete for access to output
cortical and subcortical control structures.

1.2. The posterior parietal cortex as a candidate SR

It has been proposed that such a salience representation is generated by the
posterior parietal cortex [22]. In particular, cells in the lateral intraparietal sulcus
(area LIP) appear to encode spatial locations [5,13]. More recently, Gottlieb et al.
[16] found evidence of a representation of only the most salient visual targets in this
area. LIP is thought to be important in saccadic targeting [8]. Many PPC cells also
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show multimodal responses [2,18]. Computationally, the simplest encoding of sali-
ency is by neural activation: more active areas represent more salient spatial locations.
This is the encoding adopted in this study.

The PPC in general, and LIP in particular, is ideally placed to serve as a multi-
modal co-ordinating centre. It is interconnected with a wide range of cortical and
subcortical areas [21], including visual [1,9], auditory [12], limbic [7] and frontal
areas [11]. These converging inputs suggest that the PPC receives information not
only about many different aspects of the sensory environment, but also about
intended movements [3] as well as the drive state of the organism. This makes the
PPC a strong candidate for the SR.

Two other roles proposed for the PPC are in motor intention [4] and visuospatial
attention [ 15]. Any SR description of PPC function must therefore give an account of
the relationship between attention, intention and salience.

Attention is typically described as serial, voluntary and fast (tens to hundreds of
milliseconds). It is multimodal, sensorimotor, and involves target selection; as does the
as yet unspecified mechanism which generates the SR. Occam’s razor suggests that
these two mechanisms may be the same. Attention can therefore be thought of as
a function operating to generate the SR.

On the other hand, Andersen has proposed that the PPC encodes the intention to
move. What does this mean? Intention is dissociable from movement, just as attending
to an object dissociates from saccading to it. Intention is also voluntary, like attention.
Again a merger seems reasonable. Attention in its sensory aspect mediates the
selection of visual targets. Attention in its motor aspect mediates the selection of
motor goals, and this is what we call intention.

Evidence suggests that attention may involve a process of spatially localised relative
enhancement [10] by which potential targets compete. The aim of our study was to
build a computational model of the SR which displays such enhancement. Some kind
of lateral inhibition is the most likely mechanism. However, the exact nature of the
inhibition function is unclear. Proposals have included: that the inhibition falls off as
a Gaussian, a difference of Gaussians, a step, or that it is uniform. We therefore
compared these four functions to see which, if any, evoked enhancement.

2. Methods

Simulations were written in MATLAB versions 4.2/5.0/5.1, using a grid of 10 x 10
units with fixed inhibitory connections to represent the SR. Salience was encoded by
a scalar intensity value, the activation A4, given to each unit in the grid. (In practice, the
value of the salience scalar will be set by the inputs to the PPC, which include
“sensory” (e.g. visual, auditory), “motor” (corollary discharge) and “cognitive” (e.g.
motivational and mnemonic information from limbic and prefrontal areas). An input
pattern S was applied at the start of each trial, simulating the sum of inputs to the
units. This pattern consisted of a Gaussian “blob” (peak value 1, standard deviation 1,
centred on a pseudo-randomly selected location on the grid) with added uniform
random noise in the range [0, 0.6]. At each time step t each unit’s activation A; (units
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were indexed j =1, ..., N, where N is the number of units in the grid) was syn-
chronously adjusted according to a discrete update equation, up to t = 25. For each
unit

Aoy=1S;  Ag+r)=max((Ay — ), 0),

where I, is the total inhibition acting on the unit at time . Units were bounded in the
range [0, + oo ]. Except for the uniform case, inhibition between units depends on
their relative locations within the grid. The nature of this dependence is governed by
a “width” parameter W. We investigated four lateral inhibition functions (uniform,
step, Gaussian and difference of Gaussians) to see which was most effective at
producing localised enhancement. For each function F, the resultant inhibition of
a unit indexed i at a given time step was given by

I;= Z(Fij Aj)v
J
where F;; is the value of the inhibition function between units j and i. All inhibition
was symmetrical. W is the width parameter. The four inhibition functions are
Uniform:

1
Fij = N .
Step:
1
Fij_N, AijSW, Fij:O, AU>W
Gaussian:

_ 1 (xi —x)> + (i —y)°
F;; = ———=cexp| — > .
J2nw? 2w

Difference of Gaussians (DOG):

1 C—x.)? C_v)2
Fij=—— exp< — (xi — x)) +§yl ) >
J2nw? 2Wy

1 ( (xi — x;)° + (yi — yj)2>
————c¢xp| — = .
J2nW3 2W3

For a DOG centred on the receiving unit i, whose coordinates in the 2-D layer are
[x;, yil, the widths for the two Gaussians are given by W; and W,. We used
W, =5W,.

To compare the results quantitatively, we developed a measure of image
“complexity”, the performance measure @, to assess enhancement. @ reflects how
the difference between the activation of the “best” unit, a,., and that of other units
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changes over time. It is O if all the units have the same activation, and is 1 if all the
units except one have the same value:

d = <§: (a. — aj)/a (N — 1)), N>1, a >0.

For each inhibition function, except for the uniform function which has no width
parameter W, trials were run for a range of widths W = 1-25. Enhancement was
assessed by visualisation and by calculating ®.

3. Results

Fig. 1 plots activations of the units for a trial in which enhancement occurred. F is
the step function, at a sample width W = 10. Each plot shows unit activations at
a given time t, coded by activation value (white squares represent the highest and
black squares the lowest activations). Fig. 2 shows activations for a trial where no
enhancement occurred. F is the DOG function, W = 10. The step function achieves
enhancement within a few time steps; the DOG function does not.

Time 3 Time 4 Time 5

Time 9 Time 10

Time 11 Time 13 Time 14 Time 15

Time 16 Time 18 Time 19 Time 20

Time 21 Time 22 Time 23 Time 24 Time 25

Fig. 1. Enhancement in a 10 x 10 activation matrix using the step inhibition function.
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Time 2 Time 3

Time 21 Time 22

Fig. 2. Enhancement in a 10 x 10 activation matrix using the DOG inhibition function.

Fig. 3 plots @ against time at a selection of widths W = 1, 2, 5, 10, 25. Each sub-plot
shows the results for a different inhibition function F. The step function performed
best. The optimum width appears to be W = 10 units; beyond this the performance
reached a plateau. Surprisingly, the other inhibition functions failed to achieve
enhancement.

These results indicate that enhancement is only achieved by the step function. The
uniform function is over-simplistic. However, the Gaussian and DOG, which might
have been expected to perform well, appear in fact to perform less effectively than the
simpler step function.

We also ran two further simulations. The first investigated the effect of varying
matrix connectivity for the best-performing step function, W = 10. This was done by
setting each inter-unit connection to “ON” or “OFF” with probability C in the range
0 (no connections) to 1 (full connectivity). At each value of C (expressed in percentage
terms in Fig. 4, such that 100% = full connectivity), we measured the number of time
steps taken by the simulation to reach a performance level of @ = 0.9 (90% criterion)
and @ =0.95 (95% criterion). Fig. 4 shows the results. The solid horizontal line
indicates the cut-off point; values above this level never reached criterion during the
25 time steps of the trial. In general, the lower the connectivity, the longer the
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Fig. 3. Performance of the inhibition functions over time for a range of widths.

simulation takes to reach criterion. At connectivities of C > 22%, the simulation takes
fewer than 10 steps to reach the 90% criterion; at higher connectivities (C > 63%)
simulation takes fewer than 15 steps to reach the 95% criterion. If we assume that
each time step in the simulation corresponds to a processing step in the cortex (e.g.
a synaptic transfer, of the order of 5 ms), then the enhancement effect takes shape well
within the timescale of ten to hundreds of ms required for attention.

The second simulation removed the bounding of unit activations at zero or higher.
This abolished the enhancement effect for all inhibition functions at all widths,
suggesting that zero-bounded activations are essential for relative enhancement to
occur. Since the activations of units are taken to represent some monotonic function
of neuronal firing rate (of a neuron or group of neurons), the activations cannot
plausibly fall below zero.

4. Discussion

These simulations suggest that simple lateral inhibition is an effective means of
achieving the enhancement required for target selection. Our algorithm achieves
enhancement quickly, using a simple step inhibition function. We argue that
such inhibition is biologically plausible and could be implemented by, for instance,
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Effect of connectivity on speed of enhancement
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Fig. 4. Effect of connectivity on performance for the step inhibition function.

GABAergic interneurons connecting to a local cluster of surrounding cells. This
simple mechanism, combined with the vast range of inputs which reach the posterior
parietal cortex, could be sufficient to underlie the salience representation postulated to
exist in the PPC. As we argued in the Introduction, this representation may be central
to both attention and intention.
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